Neuropediatrics 2018; 49(04): 269-275
DOI: 10.1055/s-0038-1660475
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Age-Related Changes and Reference Values of Bicaudate Ratio and Sagittal Brainstem Diameters on MRI

Sven F. Garbade
1   Division of Neuropediatrics and Metabolic Medicine, Clinic I, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
,
Nikolas Boy
1   Division of Neuropediatrics and Metabolic Medicine, Clinic I, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
,
Jana Heringer
1   Division of Neuropediatrics and Metabolic Medicine, Clinic I, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
,
Stefan Kölker
1   Division of Neuropediatrics and Metabolic Medicine, Clinic I, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
,
Inga Harting
2   Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
› Author Affiliations
Further Information

Publication History

12 December 2017

27 April 2018

Publication Date:
05 June 2018 (online)

Abstract

Cranial magnetic resonance imaging (MRI) plays an important role in the diagnosis of neurometabolic diseases, and, in addition, temporal patterns of signal and volume changes allow insight into the underlying pathogenesis. While assessment of volume changes by visual inspection is subjective, volumetric approaches are often not feasible with rare neurometabolic diseases, where MRIs are often acquired with different scanners and protocols. Linear surrogate parameters of brain volume, for example, the bicaudate ratio, present a robust alternative that can be derived from standard imaging sequences. Due to the continuing postnatal brain and skull development and later brain involution, it is, however, necessary to compare patient values with age age-adapted normal values.

In this article, we present age-dependent normal values derived from 993 standard scans of patients with normal MRI findings (age range: 0–80 years; mean = 19.9; median = 12.8 years) for bicaudate ratio as a measure of global supratentorial volume, as well as the maximal anteroposterior diameters of mesencephalon, pons, and medulla oblongata as parameters of brainstem volume. The provided data allow quantitative, objective assessment of brain volume changes instead of the usually performed visual and therefore subjective assessment.

 
  • References

  • 1 Schiffmann R, van der Knaap MS. Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 2009; 72 (08) 750-759
  • 2 Loes DJ, Hite S, Moser H. , et al. Adrenoleukodystrophy: a scoring method for brain MR observations. AJNR Am J Neuroradiol 1994; 15 (09) 1761-1766
  • 3 Eichler F, Grodd W, Grant E. , et al. Metachromatic leukodystrophy: a scoring system for brain MR imaging observations. AJNR Am J Neuroradiol 2009; 30 (10) 1893-1897
  • 4 Vrij-van den Bos S, Hol J, La Piana R. , et al. 4H leukodystrophy: a brain magnetic resonance imaging scoring system. Neuropediatrics 2017; 48 (03) 152-160
  • 5 Sarret C, Lemaire JJ, Tonduti D. , et al. Time-course of myelination and atrophy on cerebral imaging in 35 patients with PLP1-related disorders. Dev Med Child Neurol 2016; 58 (07) 706-713
  • 6 van der Knaap MS, Bakker CJ, Faber JA. , et al. Comparison of skull circumference and linear measurements with CSF volume MR measurements in hydrocephalus. J Comput Assist Tomogr 1992; 16 (05) 737-743 doi: none.
  • 7 Bermel RA, Bakshi R, Tjoa C, Puli SR, Jacobs L. Bicaudate ratio as a magnetic resonance imaging marker of brain atrophy in multiple sclerosis. Arch Neurol 2002; 59 (02) 275-280
  • 8 Aylward EH, Schwartz J, Machlin S, Pearlson G. Bicaudate ratio as a measure of caudate volume on MR images. AJNR Am J Neuroradiol 1991; 12 (06) 1217-1222
  • 9 Ho VB, Chuang HS, Rovira MJ, Koo B. Juvenile Huntington disease: CT and MR features. AJNR Am J Neuroradiol 1995; 16 (07) 1405-1412
  • 10 Butzkueven H, Kolbe SC, Jolley DJ. , et al. Validation of linear cerebral atrophy markers in multiple sclerosis. J Clin Neurosci 2008; 15 (02) 130-137
  • 11 Bekkelund SI, Pierre-Jerome C, Husby G, Mellgren SI. Quantitative cerebral MR in rheumatoid arthritis. AJNR Am J Neuroradiol 1995; 16 (04) 767-772
  • 12 Mamere AE, Saraiva LA, Matos AL, Carneiro AA, Santos AC. Evaluation of delayed neuronal and axonal damage secondary to moderate and severe traumatic brain injury using quantitative MR imaging techniques. AJNR Am J Neuroradiol 2009; 30 (05) 947-952
  • 13 Dal Pan GJ, McArthur JH, Aylward E. , et al. Patterns of cerebral atrophy in HIV-1-infected individuals: results of a quantitative MRI analysis. Neurology 1992; 42 (11) 2125-2130
  • 14 Warmuth-Metz M, Naumann M, Csoti I, Solymosi L. Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy. Arch Neurol 2001; 58 (07) 1076-1079
  • 15 Argyropoulou MI, Xydis V, Drougia A. , et al. MRI measurements of the pons and cerebellum in children born preterm; associations with the severity of periventricular leukomalacia and perinatal risk factors. Neuroradiology 2003; 45 (10) 730-734
  • 16 Raininko R, Autti T, Vanhanen SL, Ylikoski A, Erkinjuntti T, Santavuori P. The normal brain stem from infancy to old age. A morphometric MRI study. Neuroradiology 1994; 36 (05) 364-368
  • 17 Wilk R, Kluczewska E, Syc B, Bajor G. Normative values for selected linear indices of the intracranial fluid spaces based on CT images of the head in children. Pol J Radiol 2011; 76 (03) 16-25
  • 18 Kivitie-Kallio S, Autti T, Salonen O, Norio R. MRI of the brain in the Cohen syndrome: a relatively large corpus callosum in patients with mental retardation and microcephaly. Neuropediatrics 1998; 29 (06) 298-301
  • 19 Gomori JM, Steiner I, Melamed E, Cooper G. The assessment of changes in brain volume using combined linear measurements. A CT-scan study. Neuroradiology 1984; 26 (01) 21-24
  • 20 Severino M, Tortora D, Pistorio A. , et al. Expanding the spectrum of congenital anomalies of the diencephalic-mesencephalic junction. Neuroradiology 2016; 58 (01) 33-44
  • 21 Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood. Stat Med 1992; 11 (10) 1305-1319
  • 22 Yee T. Vector Generalized Linear and Additive Models: With an Implementation in R. New York, NY: Springer; 2015
  • 23 Yee T. VGAM: Vector Generalized Linear and Additive Models. R package version 1.0–3. https://cran.r-project.org/web/packages/VGAMdata . Accessed June 1, 2018
  • 24 Laukka JJ, Stanley JA, Garbern JY. , et al. Neuroradiologic correlates of clinical disability and progression in the X-linked leukodystrophy Pelizaeus-Merzbacher disease. J Neurol Sci 2013; 335 (1-2): 75-81
  • 25 Doraiswamy PM, Patterson L, Na C. , et al. Bicaudate index on magnetic resonance imaging: effects of normal aging. J Geriatr Psychiatry Neurol 1994; 7 (01) 13-17
  • 26 Sanfilipo MP, Benedict RH, Sharma J, Weinstock-Guttman B, Bakshi R. The relationship between whole brain volume and disability in multiple sclerosis: a comparison of normalized gray vs. white matter with misclassification correction. Neuroimage 2005; 26 (04) 1068-1077
  • 27 van Zagten M, Kessels F, Boiten J, Lodder J. Interobserver agreement in the assessment of cerebral atrophy on CT using bicaudate and Sylvian-fissure ratios. Neuroradiology 1999; 41 (04) 261-264
  • 28 Colledge N, Sellar R, Wardlaw J, Lewis S, Mead G, Wilson J. Interobserver agreement in magnetic resonance brain and neck imaging. J Neuroimaging 2006; 16 (01) 47-51
  • 29 Staufner C, Blom HJ, Dionisi-Vici C. , et al. MRI and (1)H-MRS in adenosine kinase deficiency. Neuroradiology 2016; 58 (07) 697-703
  • 30 Courchesne E, Chisum HJ, Townsend J. , et al. Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 2000; 216 (03) 672-682
  • 31 Sanchez CE, Richards JE, Almli CR. Neurodevelopmental MRI brain templates for children from 2 weeks to 4 years of age. Dev Psychobiol 2012; 54 (01) 77-91
  • 32 Lenroot RK, Gogtay N, Greenstein DK. , et al. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage 2007; 36 (04) 1065-1073
  • 33 Ruigrok AN, Salimi-Khorshidi G, Lai M-C. , et al. A meta-analysis of sex differences in human brain structure. Neurosci Biobehav Rev 2014; 39: 34-50
  • 34 Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol 2003; 60 (07) 989-994
  • 35 Pintzka CW, Hansen TI, Evensmoen HR, Håberg AK. Marked effects of intracranial volume correction methods on sex differences in neuroanatomical structures: a HUNT MRI study. Front Neurosci 2015; 9: 238
  • 36 Doraiswamy PM, Na C, Husain MM. , et al. Morphometric changes of the human midbrain with normal aging: MR and stereologic findings. AJNR Am J Neuroradiol 1992; 13 (01) 383-386
  • 37 Chida K, Goto N, Kamikura I, Takasu T. Quantitative evaluation of pontine atrophy using computer tomography. Neuroradiology 1989; 31 (01) 13-15
  • 38 Chaves ML, Ilha D, Maia AL, Motta E, Lehmen R, Oliveira LM. Diagnosing dementia and normal aging: clinical relevance of brain ratios and cognitive performance in a Brazilian sample. Braz J Med Biol Res 1999; 32 (09) 1133-1143
  • 39 Padovani A, Di Piero V, Bragoni M. , et al. Correlates of leukoaraiosis and ventricular enlargement on magnetic resonance imaging: a study in normal elderly and cerebrovascular patients. Eur J Neurol 1997; 4 (01) 15-23
  • 40 Abalo-Lojo JM, Limeres CC, Gómez MA. , et al. Retinal nerve fiber layer thickness, brain atrophy, and disability in multiple sclerosis patients. J Neuroophthalmol 2014; 34 (01) 23-28
  • 41 Seppi K, Schocke MF, Mair KJ. , et al. Diffusion-weighted imaging in Huntington's disease. Mov Disord 2006; 21 (07) 1043-1047
  • 42 Lee PH, Yong SW, Ahn YH, Huh K. Correlation of midbrain diameter and gait disturbance in patients with idiopathic normal pressure hydrocephalus. J Neurol 2005; 252 (08) 958-963
  • 43 Luft AR, Skalej M, Schulz JB. , et al. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex 1999; 9 (07) 712-721
  • 44 Lambert C, Chowdhury R, Fitzgerald TH. , et al. Characterizing aging in the human brainstem using quantitative multimodal MRI analysis. Front Hum Neurosci 2013; 7: 462
  • 45 Giedd JN, Stockman M, Weddle C. , et al. Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation. Neuropsychol Rev 2010; 20 (04) 349-361