Subscribe to RSS
DOI: 10.1055/s-0038-1655775
Emerging Technologies for the Diagnosis of Perihilar Cholangiocarcinoma

Abstract
The diagnosis of malignant biliary strictures remains problematic, especially in the perihilar region and in primary sclerosing cholangitis (PSC). Conventional cytology obtained during endoscopic retrograde cholangiography (ERC)-guided brushings of biliary strictures is suboptimal due to limited sensitivity, albeit it remains the gold standard with a high specificity. Emerging technologies are being developed and validated to address this pressing unmet patient need. Such technologies include enhanced visualization of the biliary tree by cholangioscopy, intraductal ultrasound, and confocal laser endomicroscopy. Conventional cytology can be aided by employing complementary and advanced cytologic techniques such as fluorescent in situ hybridization (FISH), and this technique should be widely adapted. Interrogation of bile and serum by examining extracellular vesicle number and cargo, and exploiting next-generation sequencing and proteomic technologies, is also being explored. Examination of circulating cell-free deoxyribonucleic acid (cfDNA) for differentially methylated regions is a promising test which is being rigorously validated. The special expertise required for these analyses has to date hampered their validation and adaptation. Herein, we will review these emerging technologies to inform the reader of the progress made and encourage further studies, as well as adaptation of validated approaches.
Publication History
Publication Date:
05 June 2018 (online)
© 2018. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1
Rizvi S,
Gores GJ.
Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 2013;
145 (06) 1215-1229
MissingFormLabel
- 2
Rizvi S,
Gores GJ.
Current diagnostic and management options in perihilar cholangiocarcinoma. Digestion
2014; 89 (03) 216-224
MissingFormLabel
- 3
DeOliveira ML,
Cunningham SC,
Cameron JL.
, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single
institution. Ann Surg 2007; 245 (05) 755-762
MissingFormLabel
- 4
Boonstra K,
Weersma RK,
van Erpecum KJ.
, et al; EpiPSCPBC Study Group. Population-based epidemiology, malignancy risk, and
outcome of primary sclerosing cholangitis. Hepatology 2013; 58 (06) 2045-2055
MissingFormLabel
- 5
Kornfeld D,
Ekbom A,
Ihre T.
Survival and risk of cholangiocarcinoma in patients with primary sclerosing cholangitis.
A population-based study. Scand J Gastroenterol 1997; 32 (10) 1042-1045
MissingFormLabel
- 6
Everhart JE,
Ruhl CE.
Burden of digestive diseases in the United States Part III: liver, biliary tract,
and pancreas. Gastroenterology 2009; 136 (04) 1134-1144
MissingFormLabel
- 7
Rizvi S,
Khan SA,
Hallemeier CL,
Kelley RK,
Gores GJ.
Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol
2018; 15 (02) 95-111
MissingFormLabel
- 8
Barr Fritcher EG,
Voss JS,
Brankley SM.
, et al. An optimized set of fluorescence in situ hybridization probes for detection
of pancreatobiliary tract cancer in cytology brush samples. Gastroenterology 2015;
149 (07) 1813-1824.e1
MissingFormLabel
- 9
Trikudanathan G,
Navaneethan U,
Njei B,
Vargo JJ,
Parsi MA.
Diagnostic yield of bile duct brushings for cholangiocarcinoma in primary sclerosing
cholangitis: a systematic review and meta-analysis. Gastrointest Endosc 2014; 79 (05)
783-789
MissingFormLabel
- 10
Barr Fritcher EG,
Kipp BR,
Slezak JM.
, et al. Correlating routine cytology, quantitative nuclear morphometry by digital
image analysis, and genetic alterations by fluorescence in situ hybridization to assess
the sensitivity of cytology for detecting pancreatobiliary tract malignancy. Am J
Clin Pathol 2007; 128 (02) 272-279
MissingFormLabel
- 11
Brooks C,
Gausman V,
Kokoy-Mondragon C.
, et al. Role of fluorescent in situ hybridization, cholangioscopic biopsies, and
EUS-FNA in the evaluation of biliary strictures. Dig Dis Sci 2018; 63 (03) 636-644
MissingFormLabel
- 12
Navaneethan U,
Njei B,
Venkatesh PG,
Vargo JJ,
Parsi MA.
Fluorescence in situ hybridization for diagnosis of cholangiocarcinoma in primary
sclerosing cholangitis: a systematic review and meta-analysis. Gastrointest Endosc
2014; 79 (06) 943-950.e3
MissingFormLabel
- 13
Jhaveri KS,
Hosseini-Nik H.
MRI of cholangiocarcinoma. J Magn Reson Imaging 2015; 42 (05) 1165-1179
MissingFormLabel
- 14
Charatcharoenwitthaya P,
Enders FB,
Halling KC,
Lindor KD.
Utility of serum tumor markers, imaging, and biliary cytology for detecting cholangiocarcinoma
in primary sclerosing cholangitis. Hepatology 2008; 48 (04) 1106-1117
MissingFormLabel
- 15
Fevery J,
Buchel O,
Nevens F,
Verslype C,
Stroobants S,
Van Steenbergen W.
Positron emission tomography is not a reliable method for the early diagnosis of cholangiocarcinoma
in patients with primary sclerosing cholangitis. J Hepatol 2005; 43 (02) 358-360
MissingFormLabel
- 16
Alkhawaldeh K,
Faltten S,
Biersack HJ,
Ezziddin S.
The value of F-18 FDG PET in patients with primary sclerosing cholangitis and cholangiocarcinoma
using visual and semiquantitative analysis. Clin Nucl Med 2011; 36 (10) 879-883
MissingFormLabel
- 17
Ma KW,
Cheung TT,
She WH.
, et al. Diagnostic and prognostic role of 18-FDG PET/CT in the management of resectable
biliary tract cancer. World J Surg 2018; 42 (03) 823-834
MissingFormLabel
- 18
Saluja SS,
Sharma R,
Pal S,
Sahni P,
Chattopadhyay TK.
Differentiation between benign and malignant hilar obstructions using laboratory and
radiological investigations: a prospective study. HPB 2007; 9 (05) 373-382
MissingFormLabel
- 19
Chapman R,
Fevery J,
Kalloo A.
, et al; American Association for the Study of Liver Diseases. Diagnosis and management
of primary sclerosing cholangitis. Hepatology 2010; 51 (02) 660-678
MissingFormLabel
- 20
Schramm C,
Eaton J,
Ringe KI,
Venkatesh S,
Yamamura J.
; MRI working group of the IPSCSG. Recommendations on the use of magnetic resonance
imaging in PSC-A position statement from the International PSC Study Group. Hepatology
2017; 66 (05) 1675-1688
MissingFormLabel
- 21
Mohamadnejad M,
DeWitt JM,
Sherman S.
, et al. Role of EUS for preoperative evaluation of cholangiocarcinoma: a large single-center
experience. Gastrointest Endosc 2011; 73 (01) 71-78
MissingFormLabel
- 22
Téllez-Ávila FI,
Bernal-Méndez AR,
Guerrero-Vázquez CG,
Martínez-Lozano JA,
Ramírez-Luna MÁ.
Diagnostic yield of EUS-guided tissue acquisition as a first-line approach in patients
with suspected hilar cholangiocarcinoma. Am J Gastroenterol 2014; 109 (08) 1294-1296
MissingFormLabel
- 23
Navaneethan U,
Njei B,
Venkatesh PG,
Lourdusamy V,
Sanaka MR.
Endoscopic ultrasound in the diagnosis of cholangiocarcinoma as the etiology of biliary
strictures: a systematic review and meta-analysis. Gastroenterol Rep (Oxf) 2015; 3
(03) 209-215
MissingFormLabel
- 24
Heimbach JK,
Sanchez W,
Rosen CB,
Gores GJ.
Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated
with disease dissemination. HPB 2011; 13 (05) 356-360
MissingFormLabel
- 25
El Chafic AH,
Dewitt J,
Leblanc JK.
, et al. Impact of preoperative endoscopic ultrasound-guided fine needle aspiration
on postoperative recurrence and survival in cholangiocarcinoma patients. Endoscopy
2013; 45 (11) 883-889
MissingFormLabel
- 26
Levy MJ,
Heimbach JK,
Gores GJ.
Endoscopic ultrasound staging of cholangiocarcinoma. Curr Opin Gastroenterol 2012;
28 (03) 244-252
MissingFormLabel
- 27
Gleeson FC,
Rajan E,
Levy MJ.
, et al. EUS-guided FNA of regional lymph nodes in patients with unresectable hilar
cholangiocarcinoma. Gastrointest Endosc 2008; 67 (03) 438-443
MissingFormLabel
- 28
Navaneethan U,
Njei B,
Lourdusamy V,
Konjeti R,
Vargo JJ,
Parsi MA.
Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection
of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest
Endosc 2015; 81 (01) 168-176
MissingFormLabel
- 29
Meister T,
Heinzow HS,
Woestmeyer C.
, et al. Intraductal ultrasound substantiates diagnostics of bile duct strictures
of uncertain etiology. World J Gastroenterol 2013; 19 (06) 874-881
MissingFormLabel
- 30
Lee JH,
Salem R,
Aslanian H,
Chacho M,
Topazian M.
Endoscopic ultrasound and fine-needle aspiration of unexplained bile duct strictures.
Am J Gastroenterol 2004; 99 (06) 1069-1073
MissingFormLabel
- 31
Chen YK,
Parsi MA,
Binmoeller KF.
, et al. Single-operator cholangioscopy in patients requiring evaluation of bile
duct disease or therapy of biliary stones (with videos). Gastrointest Endosc 2011;
74 (04) 805-814
MissingFormLabel
- 32
Navaneethan U,
Hasan MK,
Lourdusamy V,
Njei B,
Varadarajulu S,
Hawes RH.
Single-operator cholangioscopy and targeted biopsies in the diagnosis of indeterminate
biliary strictures: a systematic review. Gastrointest Endosc 2015; 82 (04) 608-14.e2
MissingFormLabel
- 33
Njei B,
McCarty TR,
Varadarajulu S,
Navaneethan U.
Cost utility of ERCP-based modalities for the diagnosis of cholangiocarcinoma in primary
sclerosing cholangitis. Gastrointest Endosc 2017; 85 (04) 773-781.e10
MissingFormLabel
- 34
Navaneethan U,
Hasan MK,
Kommaraju K.
, et al. Digital, single-operator cholangiopancreatoscopy in the diagnosis and management
of pancreatobiliary disorders: a multicenter clinical experience (with video). Gastrointest
Endosc 2016; 84 (04) 649-655
MissingFormLabel
- 35
Mounzer R,
Austin GL,
Wani S,
Brauer BC,
Fukami N,
Shah RJ.
Per-oral video cholangiopancreatoscopy with narrow-band imaging for the evaluation
of indeterminate pancreaticobiliary disease. Gastrointest Endosc 2017; 85 (03) 509-517
MissingFormLabel
- 36
Meining A,
Shah RJ,
Slivka A.
, et al. Classification of probe-based confocal laser endomicroscopy findings in
pancreaticobiliary strictures. Endoscopy 2012; 44 (03) 251-257
MissingFormLabel
- 37
Talreja JP,
Sethi A,
Jamidar PA.
, et al. Interpretation of probe-based confocal laser endomicroscopy of indeterminate
biliary strictures: is there any interobserver agreement?. Dig Dis Sci 2012; 57 (12)
3299-3302
MissingFormLabel
- 38
Peter S,
Council L,
Bang JY.
, et al. Poor agreement between endoscopists and gastrointestinal pathologists for
the interpretation of probe-based confocal laser endomicroscopy findings. World J
Gastroenterol 2014; 20 (47) 17993-18000
MissingFormLabel
- 39
Caillol F,
Filoche B,
Gaidhane M,
Kahaleh M.
Refined probe-based confocal laser endomicroscopy classification for biliary strictures:
the Paris Classification. Dig Dis Sci 2013; 58 (06) 1784-1789
MissingFormLabel
- 40
Slivka A,
Gan I,
Jamidar P.
, et al. Validation of the diagnostic accuracy of probe-based confocal laser endomicroscopy
for the characterization of indeterminate biliary strictures: results of a prospective
multicenter international study. Gastrointest Endosc 2015; 81 (02) 282-290
MissingFormLabel
- 41
Jailwala J,
Fogel EL,
Sherman S.
, et al. Triple-tissue sampling at ERCP in malignant biliary obstruction. Gastrointest
Endosc 2000; 51 (4 Pt 1): 383-390
MissingFormLabel
- 42
Eaton JE,
Gossard AA,
Talwalkar JA.
Recall processes for biliary cytology in primary sclerosing cholangitis. Curr Opin
Gastroenterol 2014; 30 (03) 287-294
MissingFormLabel
- 43
Eaton JE,
Barr Fritcher EG,
Gores GJ.
, et al. Biliary multifocal chromosomal polysomy and cholangiocarcinoma in primary
sclerosing cholangitis. Am J Gastroenterol 2015; 110 (02) 299-309
MissingFormLabel
- 44
Barr Fritcher EG,
Voss JS,
Jenkins SM.
, et al. Primary sclerosing cholangitis with equivocal cytology: fluorescence in
situ hybridization and serum CA 19-9 predict risk of malignancy. Cancer Cytopathol
2013; 121 (12) 708-717
MissingFormLabel
- 45
Furmanczyk PS,
Grieco VS,
Agoff SN.
Biliary brush cytology and the detection of cholangiocarcinoma in primary sclerosing
cholangitis: evaluation of specific cytomorphologic features and CA19-9 levels. Am
J Clin Pathol 2005; 124 (03) 355-360
MissingFormLabel
- 46
Bangarulingam SY,
Bjornsson E,
Enders F.
, et al. Long-term outcomes of positive fluorescence in situ hybridization tests
in primary sclerosing cholangitis. Hepatology 2010; 51 (01) 174-180
MissingFormLabel
- 47
Barr Fritcher EG,
Kipp BR,
Voss JS.
, et al. Primary sclerosing cholangitis patients with serial polysomy fluorescence
in situ hybridization results are at increased risk of cholangiocarcinoma. Am J Gastroenterol
2011; 106 (11) 2023-2028
MissingFormLabel
- 48
Levy C,
Lymp J,
Angulo P,
Gores GJ,
Larusso N,
Lindor KD.
The value of serum CA 19-9 in predicting cholangiocarcinomas in patients with primary
sclerosing cholangitis. Dig Dis Sci 2005; 50 (09) 1734-1740
MissingFormLabel
- 49
Ali AH,
Tabibian JH,
Nasser-Ghodsi N.
, et al. Surveillance for hepatobiliary cancers in patients with primary sclerosing
cholangitis. Hepatology 2017;
MissingFormLabel
- 50
Eaton JE,
McCauley BM,
Atkinson EJ.
, et al. Variations in primary sclerosing cholangitis across the age spectrum. J
Gastroenterol Hepatol 2017; 32 (10) 1763-1768
MissingFormLabel
- 51
Weismüller TJ,
Trivedi PJ,
Bergquist A.
, et al; International PSC Study Group. Patient age, sex, and inflammatory bowel
disease phenotype associate with course of primary sclerosing cholangitis. Gastroenterology
2017; 152 (08) 1975-1984.e8
MissingFormLabel
- 52
Rizvi S,
Eaton JE,
Gores GJ.
Primary sclerosing cholangitis as a premalignant biliary tract disease: surveillance
and management. Clin Gastroenterol Hepatol 2015; 13 (12) 2152-2165
MissingFormLabel
- 53
Boyd S,
Tenca A,
Jokelainen K.
, et al. Screening primary sclerosing cholangitis and biliary dysplasia with endoscopic
retrograde cholangiography and brush cytology: risk factors for biliary neoplasia.
Endoscopy 2016; 48 (05) 432-439
MissingFormLabel
- 54
Kinde I,
Wu J,
Papadopoulos N,
Kinzler KW,
Vogelstein B.
Detection and quantification of rare mutations with massively parallel sequencing.
Proc Natl Acad Sci U S A 2011; 108 (23) 9530-9535
MissingFormLabel
- 55
Dudley JC,
Zheng Z,
McDonald T.
, et al. Next-generation sequencing and fluorescence in situ hybridization have comparable
performance characteristics in the analysis of pancreaticobiliary brushings for malignancy.
J Mol Diagn 2016; 18 (01) 124-130
MissingFormLabel
- 56
Hirsova P,
Ibrahim SH,
Verma VK.
, et al. Extracellular vesicles in liver pathobiology: small particles with big impact.
Hepatology 2016; 64 (06) 2219-2233
MissingFormLabel
- 57
Li L,
Masica D,
Ishida M.
, et al. Human bile contains microRNA-laden extracellular vesicles that can be used
for cholangiocarcinoma diagnosis. Hepatology 2014; 60 (03) 896-907
MissingFormLabel
- 58
Ge X,
Wang Y,
Nie J.
, et al. The diagnostic/prognostic potential and molecular functions of long non-coding
RNAs in the exosomes derived from the bile of human cholangiocarcinoma. Oncotarget
2017; 8 (41) 69995-70005
MissingFormLabel
- 59
Li L,
Piontek K,
Ishida M.
, et al. Extracellular vesicles carry microRNA-195 to intrahepatic cholangiocarcinoma
and improve survival in a rat model. Hepatology 2017; 65 (02) 501-514
MissingFormLabel
- 60
Julich-Haertel H,
Urban SK,
Krawczyk M.
, et al. Cancer-associated circulating large extracellular vesicles in cholangiocarcinoma
and hepatocellular carcinoma. J Hepatol 2017; 67 (02) 282-292
MissingFormLabel
- 61
Al-Nedawi K,
Meehan B,
Micallef J.
, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles
derived from tumour cells. Nat Cell Biol 2008; 10 (05) 619-624
MissingFormLabel
- 62
Peinado H,
Alečković M,
Lavotshkin S.
, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic
phenotype through MET. Nat Med 2012; 18 (06) 883-891
MissingFormLabel
- 63
Arbelaiz A,
Azkargorta M,
Krawczyk M.
, et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing
cholangitis and cholangiocarcinoma. Hepatology 2017; 66 (04) 1125-1143
MissingFormLabel
- 64
Severino V,
Dumonceau JM,
Delhaye M.
, et al. Extracellular vesicles in bile as markers of malignant biliary stenoses.
Gastroenterology 2017; 153 (02) 495-504.e8
MissingFormLabel
- 65
Lankisch TO,
Metzger J,
Negm AA.
, et al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing
cholangitis and choledocholithiasis. Hepatology 2011; 53 (03) 875-884
MissingFormLabel
- 66
Metzger J,
Negm AA,
Plentz RR.
, et al. Urine proteomic analysis differentiates cholangiocarcinoma from primary
sclerosing cholangitis and other benign biliary disorders. Gut 2013; 62 (01) 122-130
MissingFormLabel
- 67
Alix-Panabières C,
Pantel K.
Clinical applications of circulating tumor cells and circulating tumor DNA as liquid
biopsy. Cancer Discov 2016; 6 (05) 479-491
MissingFormLabel
- 68
Haber DA,
Velculescu VE.
Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA.
Cancer Discov 2014; 4 (06) 650-661
MissingFormLabel
- 69
Pantel K,
Alix-Panabières C.
Real-time liquid biopsy in cancer patients: fact or fiction?. Cancer Res 2013; 73
(21) 6384-6388
MissingFormLabel
- 70
Gerlinger M,
Rowan AJ,
Horswell S.
, et al. Intratumor heterogeneity and branched evolution revealed by multiregion
sequencing. N Engl J Med 2012; 366 (10) 883-892
MissingFormLabel
- 71
Murtaza M,
Dawson SJ,
Pogrebniak K.
, et al. Multifocal clonal evolution characterized using circulating tumour DNA in
a case of metastatic breast cancer. Nat Commun 2015; 6: 8760
MissingFormLabel
- 72
Ilie M,
Hofman V,
Long-Mira E.
, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer
in patients with chronic obstructive pulmonary disease. PLoS One 2014; 9 (10) e111597
MissingFormLabel
- 73
Rhim AD,
Mirek ET,
Aiello NM.
, et al. EMT and dissemination precede pancreatic tumor formation. Cell 2012; 148
(1-2): 349-361
MissingFormLabel
- 74
Hüsemann Y,
Geigl JB,
Schubert F.
, et al. Systemic spread is an early step in breast cancer. Cancer Cell 2008; 13
(01) 58-68
MissingFormLabel
- 75
Yang JD,
Campion MB,
Liu MC.
, et al. Circulating tumor cells are associated with poor overall survival in patients
with cholangiocarcinoma. Hepatology 2016; 63 (01) 148-158
MissingFormLabel
- 76
Zill OA,
Greene C,
Sebisanovic D.
, et al. Cell-free DNA next-generation sequencing in pancreatobiliary carcinomas.
Cancer Discov 2015; 5 (10) 1040-1048
MissingFormLabel
- 77
Andresen K,
Boberg KM,
Vedeld HM.
, et al. Four DNA methylation biomarkers in biliary brush samples accurately identify
the presence of cholangiocarcinoma. Hepatology 2015; 61 (05) 1651-1659
MissingFormLabel
- 78
Yang J,
Yab T,
Taylor WR.
, et al. Detection of cholangiocarcinoma by assay of methylated DNA markers in plasma.
Gastroenterology 2017; 152: S1041-S1042
MissingFormLabel