Kinder- und Jugendmedizin 2018; 18(02): 80-86
DOI: 10.1055/s-0038-1646134
Knochengesundheit/Skeletterkrankungen
Schattauer GmbH

Physiologie der Muskel- und Skelettentwicklung

Perspektiven für die KinderrehabilitationPhysiology of muscle and bone developmentPerspectives for pediatric rehabilitation
C. Stark
1   Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln
,
O. Semler
1   Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln
,
H.-K. Hoyer-Kuhn
1   Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln
,
M. Rehberg
1   Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln
,
E. Schönau
1   Klinik und Poliklinik für Kinder- und Jugendmedizin, Uniklinik Köln
2   Zentrum für Prävention und Rehabilitation, UniReha GmbH, Uniklinik Köln
› Author Affiliations
Further Information

Publication History

Eingereicht am: 22 September 2017

angenommen am: 30 September 2017

Publication Date:
27 April 2018 (online)

Zusammenfassung

Mechanische Kräfte sind essenziell, um die Funktionen von Geweben, wie dem Knochen, aufrechtzuerhalten. Die Wichtigkeit der Muskulatur und deren einwirkende Kräfte auf den Knochen für die Skelettentwicklung sind seit langem bekannt. Das Konzept der funktionellen Muskel-Knochen-Einheit empfiehlt die konsequente Überprüfung der Muskulatur, um primäre von sekundären Skeletterkrankungen zu unterscheiden. Beide haben ein erhöhtes Frakturrisiko gemeinsam, welches es gilt, durch rehabilitative Maßnahmen zu minimieren. Effektive Rehabilitationskonzepte mit Schwerpunkt der Mobilität sollten die Zusammenhänge der Inaktivität und neuromuskulären Kommunikation berücksichtigen. Das multimodale Rehabilitationsprogramm „Auf die Beine“ für Kinder und Jugendliche mit Bewegungsstörungen ist translational aus Modellen zur funktionellen Muskel-Knochen-Einheit entstanden und es konnte eine positive Entwicklung der Mobilität bei Kindern und Jugendlichen mit Störungen der Mobilität nach Teilnahme festgestellt werden.

Summary

Mechanical forces are essential to maintain the homeostasis of tissues, such as bone. The importance of muscles and their forces acting on bone are well known for skeletal development. The concept of the functional muscle-bone unit recommends the consequent muscular testing to discriminate between primary and secondary skeletal disorders. Both have an increased risk of fracture, which should be minimized by rehabilitation strategies. Effective rehabilitation concepts with emphasis on mobility should take the relationships of inactivity and neuromuscular communication into account. The multimodal rehabilitation program „Auf die Beine“ for children and adolescents with movement disorders has emerged translationally from the functional muscle-bone unit model. A positive development of mobility has been shown for children and adolescents with mobility disorders after participation.

 
  • Literatur

  • 1 Wolff J. Das Gesetz der Transformation der Knochen. Berlin, Hirschwald: Julius Wolff Institut; 1892
  • 2 Frost HM. From Wolff ‘s law to the mechanostat: a new “face” of physiology. J Orthop Sci 1998; 03: 282-286.
  • 3 Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 2003; 275: 1081-1101.
  • 4 Frost HM. Bone “mass” and the “mechanostat”: a proposal. Anat Rec 1987; 219: 1-9.
  • 5 Schoenau E, Werhahn E, Schiedermaier U. et al. Influence of muscle strength on bone strength during childhood and adolescence. Horm Res 1996; 45 Suppl 1 63-66.
  • 6 Schoenau E, Neu CM, Beck B, Manz F, Rauch F. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 2002; 17: 1095-1101.
  • 7 Schoenau E, Frost HM. The “muscle-bone unit” in children and adolescents. Calcif Tissue Int 2002; 70: 405-407.
  • 8 Tatsumi S, Ishii K, Amizuka N, Li M. et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 2007; 05: 464-475.
  • 9 Uda Y, Azab E, Sun N. et al. Osteocyte Mechanobiology. Curr Osteoporos Rep 2017; 15: 318-325.
  • 10 Repp F, Kollmannsberger P, Roschger A. et al. Spatial heterogeneity in the canalicular density of the osteocyte network in human osteons. Bone Rep 2017; 06: 101-108.
  • 11 Verbruggen SW, Vaughan TJ, McNamara LM. Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. Biomech Model Mechanobiol 2014; 13: 85-97.
  • 12 Ingber DE. Tensegrity: the architectural basis of cellular mechanotransduction. Annu Rev Physiol 1997; 59: 575-599.
  • 13 Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 2006; 07: 265-275.
  • 14 Bleeker MW, De Groot PC, Rongen GA. et al. Vascular adaptation to deconditioning and the effect of an exercise countermeasure: results of the Berlin Bed Rest study. J Appl Physiol 2005; 99: 1293-1300.
  • 15 Smith SM, Zwart SR, Heer M. et al. Men and women in space: bone loss and kidney stone risk after long-duration spaceflight. J Bone Miner Res 2014; 29: 1639-1645.
  • 16 Schoenau E, Neu CM, Rauch F, Manz F. Genderspecific pubertal changes in volumetric cortical bone mineral density at the proximal radius. Bone 2002; 31: 110-113.
  • 17 Kersting M, Alexy U, Sichert-Hellert W. et al. Measured consumption of commercial infant food products in German infants: results from the DONALD study. Dortmund Nutritional and Anthropometrical Longitudinally Designed. J Pediatr Gastroenterol Nutr 1998; 27: 547-552.
  • 18 Schoenau E, Neu CM, Mokov E. et al. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab 2000; 85: 1095-1098.
  • 19 Schoenau E, Neu CM, Rauch F, Manz F. The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 2001; 86: 613-618.
  • 20 Rauch F, Neu C, Manz F, Schoenau E. The development of metaphyseal cortex--implications for distal radius fractures during growth. J Bone Miner Res 2001; 16: 1547-1555.
  • 21 Neu CM, Manz F, Rauch F. et al. Bone densities and bone size at the distal radius in healthy children and adolescents: a study using peripheral quantitative computed tomography. Bone 2001; 28: 227-232.
  • 22 Rauch F, Neu CM, Wassmer G. et al. Muscle analysis by measurement of maximal isometric grip force: new reference data and clinical applications in pediatrics. Pediatr Res 2002; 51: 505-510.
  • 23 Remer T, Boye KR, Hartmann M. et al. Adrenarche and bone modeling and remodeling at the proximal radius: weak androgens make stronger cortical bone in healthy children. J Bone Miner Res 2003; 18: 1539-1546.
  • 24 Fricke O, Weidler J, Tutlewski B, Schoenau E. Mechanography – a new device for the assessment of muscle function in pediatrics. Pediatr Res 2006; 59: 46-49.
  • 25 Schoenau E. The “functional muscle-bone unit”: a two-step diagnostic algorithm in pediatric bone disease. Pediatr Nephrol 2005; 20: 356-359.
  • 26 Duran I, Schutz F, Hamacher S. et al. The functional muscle-bone unit in children with cerebral palsy. Osteoporos Int 2017; 28: 2081-2093.
  • 27 Noble JJ, Fry NR, Lewis AP. et al. Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain Dev 2014; 36: 294-300.
  • 28 Martin L, Baker R, Harvey A. A systematic review of common physiotherapy interventions in schoolaged children with cerebral palsy. Phys Occup Ther Pediatr 2010; 30: 294-312.
  • 29 Bant H. Sportphysiotherapie. Stuttgart: Thieme; 2011
  • 30 Cardinale M, Rittweger J. Vibration exercise makes your muscles and bones stronger: fact or fiction?. J Br Menopause Soc 2006; 12: 12-18.
  • 31 Semler O, Fricke O, Vezyroglou K. et al. Results of a prospective pilot trial on mobility after whole body vibration in children and adolescents with osteogenesis imperfecta. Clin Rehabil 2008; 22: 387-394.
  • 32 Semler O, Fricke O, Vezyroglou K. et al. Preliminary results on the mobility after whole body vibration in immobilized children and adolescents. J Musculoskelet Neuronal Interact 2007; 07: 77-81.
  • 33 Stark C, Hoyer-Kuhn HK, Semler O. et al. Neuromuscular training based on whole body vibration in children with spina bifida: a retrospective analysis of a new physiotherapy treatment program. Childs Nerv Syst 31: 301-309.
  • 34 Stark C, Semler O, Duran I. et al. Intervallrehabilitation mit häuslichem Training bei Kindern mit Zerebralparese. Monatsschr Kinderheilkd 2013; 161: 625-632.
  • 35 Hoyer-Kuhn H, Semler O, Stark C. et al. A specialized rehabilitation approach improves mobility in children with osteogenesis imperfecta. J Musculoskelet Neuronal Interact 2014; 14: 445-453.
  • 36 Duquette SA, Guiliano AM, Starmer DJ. Whole body vibration and cerebral palsy: a systematic review. J Can Chiropr Assoc 2015; 59: 245-252.
  • 37 Tinderholt HMyrhaug, Ostensjo S, Larun L. et al. Intensive training of motor function and functional skills among young children with cerebral palsy: a systematic review and meta-analysis. BMC Pediatr 2014; 14: 292.
  • 38 Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: a little pain for a lot of gain?. Exerc Sport Sci Rev 2008; 36: 58-63.
  • 39 Little JP, Safdar A, Wilkin GP. et al. A practical model of low-volume high-intensity interval training induces mitochondrial biogenesis in human skeletal muscle: potential mechanisms. J Physiol 2010; 588: 1011-1022.
  • 40 Stark C, Nikopoulou-Smyrni P, Stabrey A. et al. Effect of a new physiotherapy concept on bone mineral density, muscle force and gross motor function in children with bilateral cerebral palsy. Journal of Musculoskeletal Neuronal Interactions 2010; 10: 151-158.