Osteologie 2018; 27(01): 38-47
DOI: 10.1055/s-0038-1636977
Original- und Übersichtsarbeiten – Original and review articles
Schattauer GmbH

Effekt eines körperlichen Trainings auf die Knochendichte bei Männern

Eine systematische ÜbersichtExercise effect on bone mineral density in older MenA systematic review
W. Kemmler
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
,
M. Shojaa
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
,
S. von Stengel
1   Institut für Medizinische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg
› Author Affiliations
Further Information

Publication History

eingereicht: 13 July 2017

angenommen: 25 October 2017

Publication Date:
07 March 2018 (online)

Zusammenfassung

Einleitung

Die vorliegende Übersichtsarbeit hat das primäre Ziel, Evidenzen für ein körperliches Training mit Endpunkt Knochendichte (BMD) unter Berücksichtigung der “Angemessenheit” der Studienintervention bei Männern zusammenzufassen und idealerweise auf der Basis dieser Daten Empfehlungen für ein optimiertes Körpertraining zu formulieren.

Methoden

Nach Literaturrecherche gemäß PRISMA konnten final acht Untersuchungen identifiziert werden, die unsere Eligibilitätskriterien erfüllten. Alle Untersuchungen waren randomisierte kontrollierte Trainingsstudien (RCT) mit einer Fallzahl von ≥ n = 8/Studienarm, die die BMD bei gesunden Männern 50+ nach mindestens sechs Monaten Interventionsdauer erfassten.

Ergebnisse

Die methodische und interventionsspezifische Qualität variiert zwischen den RCTs sehr deutlich. Zusammenfassend berichten nur drei Studien signifikante Effekte auf die BMD des proximalen Femurs, kein RCT erfasst signifikante Effekte an der LWS.

Fazit

Im vorliegenden Spannungsfeld liegt ein auffälliger Mangel an gut designten “state of the art”-Trainingsstudien vor. Auch Untersuchungen, welche mögliche geschlechtsspezifische Unterschiede in der ossären Adaption auf Körpertraining erfassen, erscheinen unbedingt nötig.

Summary

Introduction

From a clinical perspective, the bone mineral density (BMD)-fracture association is stronger in older men compared with older women; hence, the relevance of bone strengthening within fracture prevention might be more notable in men. Unfortunately, only few studies focus on the effect of exercise on BMD in men. Thus, the primary aim of this systematic review is (a) to provide evidence for the effect of exercise on BMD in healthy older men under special consideration of the appropriateness of the exercise intervention and correspondingly (b) to provide recommendations for an optimum exercise training to address BMD in men.

Methods

A systematic review of the literature according to the “Preferred Reporting Items for Systematic reviews and Meta-Analyses” (PRISMA) statement included only trials of exercise training ≥ 6 months with study groups of ≥ 8 healthy men 50 years+ with no bonerelevant pharmacological therapy. We further included only randomized controlled trials (RCT), nonrandomized controlled trials (NCT), and case series that specifically examined the effect of exercise on bone mineral density for male cohorts. Two researchers using standardized scores rated methodical and interventionspecific study quality and the appropriateness of the study intervention to address bone.

Results

In summary, we identified eight exercise trials, with 13 exercise and nine control groups, all RCTs that satisfied our eligibility criteria. The methodical and interventionspecific study quality vary considerably between the RCTs. We considered six studies as being appropriate to address successfully BMD in healthy men 50+. Unfortunately, within group changes and between group changes differences (i. e. “effects”) for BMD along with the corresponding significance level were not consistently given by the studies. Only three studies reported significant exercise effects on BMD for total proximal femur, one of them determined significant differences between the exercisegroups. Further, none of the exercise trials determined significant BMD-effects at the LS. Based on the present data we are finally unable to recommend dedicated exercise programs for men.

Conclusion

We conclude, that apart from the need for more well designed studies that address exercise effects on BMD changes in older men, it is important to evaluate whether gender differences of bone adaption to exercise exist. The latter is of relevance to decide whether exercise recommendation generated by the much more extensive amount of studies with older female cohorts can be applied to their male peers. We further conclude that the present position to barely provide further dedicated exercise trails but progressively focus on meta-analytic results that consistently include the same or almost the same pool of exercise studies might be, a step in the wrong direction.

 
  • Literatur

  • 1 Kelley GA, Kelley KS, Kohrt WM. Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 2012; 13: 177.
  • 2 Marques EA, Mota J, Carvalho J. Exercise effects on bone mineral density in older adults: a metaanalysis of randomized controlled trials. Age 2011; 34: 1493-1515.
  • 3 Martyn-St James M, Carroll S. Effects of different impact exercise modalities on bone mineral density in premenopausal women: a meta-analysis. J Bone Miner Metab 2011; 28: 251-267.
  • 4 Zhao R, Zhao M, Xu Z. The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos Int 2015; 26: 1605-1618.
  • 5 Cummings SR, Browner WS, Bauer D. et al. Endogenous hormones and the risk of hip and vertebral fractures among older women. Study of Osteoporotic Fractures Research Group. N Engl J Med 1998; 339: 733-738.
  • 6 Cummings SR, Cawthon PM, Ensrud KE. et al. BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res 2006; 21: 1550-1556.
  • 7 Kelley GA, Kelley KS, Tran ZV. Exercise and bone mineral density in men: a meta-analysis. J Appl Physiol 2000; 88: 1730-1736.
  • 8 Bolam KA, van Uffelen JG, Taaffe DR. The effect of physical exercise on bone density in middleaged and older men: A systematic review. Osteoporos Int 2013; 24: 2749-2762.
  • 9 Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in men: a meta-analysis of randomized controlled trials. Bone 2013; 53: 103-111.
  • 10 Moher D, Jadad AR, Tugwell P. Assessing the quality of randomized controlled trials. Current issues and future directions. Int J Technol Assess Health Care 1996; 12: 195-208.
  • 11 de Morton NA. The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 2009; 55: 129-133.
  • 12 Sherrington C, Herbert RD, Maher CG, Moseley AM. PEDro. A database of randomized trials and systematic reviews in physiotherapy. Man Ther 2000; 05: 223-226.
  • 13 Kemmler W, Haberle L, von Stengel S. Effects of exercise on fracture reduction in older adults : A systematic review and meta-analysis. Osteoporos Int 2013; 24: 1937-1950.
  • 14 Allison SJ, Folland JP, Rennie WJ. et al. High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone 2013; 53: 321-328.
  • 15 Bolam KA, Skinner TL, Jenkins DG. et al. The Osteogenic Effect of Impact-Loading and Resistance Exercise on Bone Mineral Density in Middle-Aged and Older Men: A Pilot Study. Gerontology 2015; 62: 22-32.
  • 16 Helge EW, Andersen TR, Schmidt JF. et al. Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scand J Med Sci Sports 2014; 24 (Suppl. 01) 98-104.
  • 17 Huuskonen J, Väisänen SB, Kröger H. et al. Regular physical exercise and bone mineral density: a fouryear controlled randomized trial in middle-aged men. Osteoporos Int 2001; 12: 249-355.
  • 18 Kukuljan S, Nowson CA, Sanders KM. et al. Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: an 18-month factorial design randomized controlled trial. J Clin Endocrinol Metab 2011; 96: 955-963.
  • 19 McCartney N, Hicks AL, Martin J, Webber CE. Long-term resistance training in the elderly: effects on dynamic strength, exercise capacity, muscle, and bone. J Gerontol 1995; 50A: B97-B104.
  • 20 Whiteford J, Ackland TR, Dhaliwal SS. et al. Effects of a 1-year randomized controlled trial of resistance training on lower limb bone and muscle structure and function in older men. Osteoporos Int 2010; 21: 1529-1536.
  • 21 Woo J, Hong A, Lau E, Lynn H. A randomised controlled trial of Tai Chi and resistance exercise on bone health, muscle strength and balance in community-living elderly people. Age Ageing 2007; 36: 262-268.
  • 22 Kemmler W, von Stengel S, Kohl M. Exercise frequency and bone mineral density development in exercising postmenopausal osteopenic women. Is there a critical dose of exercise for affecting bone? Results of the Erlangen Fitness and Osteoporosis Prevention Study. Bone 2016; 89: 1-6.
  • 23 Kemmler W, von Stengel S. Exercise frequency, health risk factors, and diseases of the elderly. Arch Phys Med Rehabil 2013; 94: 2046-2053.
  • 24 Steele J, Fisher J, Giessing J, Gentil P. Clarity in Reporting Terminology and Definitions of Set End Points in Resistance Training. Muscle Nerve 2017; 56: 368-374.
  • 25 Kemmler W, von Stengel S. Exercise and osteoporosis-related fractures: Perspectives and recommendations of the sports and exercise scientist. Physician and Sportmedicine 2011; 39: 142-157.
  • 26 Weineck J. Optimales Training. Erlangen: Spitta; 2010
  • 27 Kemmler W, Weineck J, Hensen J. et al. Empfehlungen für ein körperliches Training zur Verbesserung der Knochenfestigkeit: Schlussfolgerungen aus Tiermodellen und Untersuchungen an Leistungssportlern. Dtsch Z Sportmed 2003; 54: 306-316.
  • 28 Skerry TM. One mechanostat or many? Modifications of the site-specific response of bone to mechanical loading by nature and nurture. J Musculoskelet Neuronal Interact 2006; 06: 122-127.
  • 29 Kelley GA, Kelley KS, Vu Tran Z. Exercise and lumbar spine bone mineral density in postmenopausal women: A meta-analysis of individual patient data. J Gerontol 2002; 57A: M599-M604.
  • 30 Martyn-St James M, Carroll S. High intensity exercise training and postmenopausal bone loss: a meta-analysis. Osteoporos Int 2006; 17: 1225-1240.
  • 31 Martyn-St James M, Carroll S. A meta-analysis of impact exercise on postmenopausal bone loss: the case for mixed loading exercise programmes. Br J Sports Med 2009; 43: 898-908.
  • 32 Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in preand postmenopausal women. Calcif Tissue Int 2000; 67: 10-18.
  • 33 Martyn-St James M, Carroll S. Progressive highintensity resistance training and bone mineral density changes among premenopausal women: evidence of discordant site-specific skeletal effects. Sports Med 2006; 36: 683-704.
  • 34 Kemmler W, von Stengel S. Trainingshäufigkeit als Erfolgsprädiktor eines körperlichen Trainings zur Osteoporoseprophylaxe. Minimale effektive Dosis der Trainingshäufigkeit für postmenopausale Frauen mit Osteopenie Osteologie 2013; 22: 32-38.
  • 35 Kemmler W, von Stengel S. Osteoporose. In: Mooren C, Knapp G, Reimers CD. Hrsg. Prävention und Therapie durch Sport. München: Urban und Fischer; 2016: 21-41.
  • 36 Kemmler W, Engelke K, von Stengel S. Long-Term Exercise and Bone Mineral Density Changes in Postmenopausal Women-Are There Periods of Reduced Effectiveness?. J Bone Miner Res 2016; 31: 215-222.
  • 37 Joober R, Schmitz N, Annable L, Boksa P. Publication bias: what are the challenges and can they be overcome?. J Psychiatry Neurosci 2012; 37: 149-152.
  • 38 Schwarzer G, Carpenter JR, Rücker G. Small-Study Effects in Meta-Analysis. In: Schwarzer G. Hrsg. Meta-Analysis with R. Heidelberg: Springer; 2015: 107-141.
  • 39 Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. When does it make sense to perform a metaanalysis. In: Borenstein M. Hrsg. Introduction to meta-analysis. Chicester, UK: John Wiley & Son; 2009
  • 40 Timmer A, Richter B. Systematische Übersichtsarbeiten zu Fragen der Therapie und Prävention. Teil 2 – Was macht eine gute Übersichtsarbeit aus. Arzneimitteltherapie 2008; 26: 252-255.
  • 41 von Stengel S, Kemmler W, Lauber D. et al. Power Training is more Effective than Strength Training to Maintain Bone Mineral Density in Postmenopausal Woman. J Appl Physiol 2005; 99: 181-188.
  • 42 Greco T, Zangrillo A, Biondi-Zoccai G, Landoni G. Meta-analysis: pitfalls and hints. Heart Lung Vessel 2013; 05: 219-225.
  • 43 Gentil P, Arruda A, Souza D. et al. Is There Any Practical Application of Meta-Analytical Results in Strength Training?. Front Physiol 2017; 08: 1.
  • 44 Kemmler W. Meta-analysis and exercise related sports medicine [Meta-Analysen im trainingswissenschaftlichen und sportmedizinischen Spannungsfeld]. Dt Ztschr Sportmedizin 2013; 64: 96-98.
  • 45 Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264-269.