Kinder- und Jugendmedizin 2008; 08(06): 351-359
DOI: 10.1055/s-0038-1630873
Knochenerkrankungen
Schattauer GmbH

Zu viele Frakturen –Verdacht auf kindliche Osteoporose?

Frequent fractures –a hallmark of childhood osteoporosis?
Christof Land
1   Klinik und Poliklinik für Allgemeine Kinderheilkunde,Universität zu Köln (Direktor:Prof. Dr. med. D. Michalk)
› Author Affiliations
Further Information

Publication History

Eingegangen: 27 June 2008

angenommen: 01 July 2008

Publication Date:
27 January 2018 (online)

Zusammenfassung

Osteoporose wird zunehmend als pädiatrisches Problem bei Kindern mit genetischen und chronischen Erkrankungen wahrgenommen. Als Folge einer kindlichen Osteoporose treten typischerweise klinisch bedeutsame Frakturen auf. Das Ziel dieses Reviews ist,einen Überblicküber die mit der kindlichen Osteoporose verbundenen Probleme bezüglich Diagnose und Therapie der betroffenen Kinder und Jugend-lichen zu geben. Während der letzten Dekade wurden große Fortschritte in Bezug auf die Identifizierung von Kindern mit Osteoporose gemacht. In den Vordergrund rücken nun mehr und mehr Fragen nach den geeigneten Strategien zur Früherkennung von Kindern, die für die Entwicklung einer Osteoporose ein entsprechendes Risiko aufweisen. Diese Herangehensweise würde die Möglichkeit zur frühzeitigen Ergreifung präventiver und therapeutischer Maßnahmen eröffnen. In dieserÜbersichtsarbeit werden die Veränderungen des Knochens während desWachstums beschrieben, Probleme bezüglich derKnochendichtemessung bei Kindern erörtert und neue Strategien zur Frakturvorhersage vorgestellt. Abschließend wird der aktuelle Stand der medikamentösen Therapie bei kindlicher Osteoporose diskutiert.

Summary

Osteoporosis is increasingly recognized as an important medical problem among pediatric patients with genetic disorders and chronic illnesses. Clinically significant fractures are a hallmark of childhood osteoporosis. The goal of this review is to provide an overview of the scope of the problem in children and adolescents, highlighting the unique issues that arise from the diagnosis and treatment of osteoporosis in the growing patient. While the past decade has seen tremendous progress in the identification of pediatric osteoporosis, there is ongoing need to develop new strategies for fracture prediction in order to primarily identify children at risk of clinically relevant fractures. These approaches would then allow for the development of early intervention strategies to prevent and treat pediatric bone disease. The purpose of this review is to briefly describe changes in bone with growth, to discuss some of the issues with pediatric bone measurements, and to review recent attempts to provide precise fracture prediction in children and adolescents. In addition, current medical treatment strategies are discussed.

 
  • Literatur

  • 1 Albright JA. Systemic treatment of osteogenesis imperfecta. Clin Orthop Relat Res 1981; 88-96.
  • 2 Astrom E, Soderhall S. Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfecta. Arch Dis Child 2002; 86: 356-64.
  • 3 Bailey DA, Wedge JH, McCulloch RG. et al. Epidemiology of fractures of the distal end of the radius in children as associated with growth. J Bone Joint Surg Am 1989; 71: 1225-1231.
  • 4 Bishop N, Braillon P, Burnham J. et al. Dual-energy X-ray aborptiometry assessment in children and adolescents with diseases that may affect the skeleton: the 2007 ISCD Pediatric Official Positions. J Clin Densitom 2008; 11: 29-42.
  • 5 Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 2006; 21: 1489-1495.
  • 6 Clark EM, Tobias JH, Ness AR. Association between bone density and fractures in children: a systematic review and meta-analysis. Pediatrics 2006; 117: e291-297.
  • 7 Engelbert RH, Uiterwaal CS, Gerver WJ. et al. Osteogenesis imperfecta in childhood: impairment and disability. A prospective study with 4-year follow- up. Arch Phys Med Rehabil 2004; 85: 772-778.
  • 8 Flynn J, Foley S, Jones G. Can BMD Assessed by DXA at Age 8 Predict Fracture Risk in Boys and Girls During Puberty?: an eight-year prospective study. J Bone Miner Res 2007; 22: 1463-1467.
  • 9 Gatti D, Antoniazzi F, Prizzi R. et al. Intravenous neridronate in children with osteogenesis imperfecta: a randomized controlled study. J Bone Miner Res 2005; 20: 758-763.
  • 10 Glorieux FH, Bishop NJ, Plotkin H. et al. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 1998; 339: 947-952.
  • 11 Glorieux FH, Rauch F, Ward L. et al. Alendronate in the treatment of pediatric osteogenesis imperfecta. Journal of Bone and Mineral Research 2004; 19: 12.
  • 12 Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone 2007; 40: 14-27.
  • 13 Jones IE, Williams SM, Goulding A. Associations of birth weight and length, childhood size, and smoking with bone fractures during growth: evidence from a birth cohort study. Am J Epidemiol 2004; 159: 343-350.
  • 14 Kanis JA, McCloskey EV, Johansson H. et al. A reference standard for the description of osteoporosis. Bone 2008; 42: 467-475.
  • 15 Khosla S, Melton 3rd LJ. et al. Incidence of childhood distal forearm fractures over 30 years: a population-based study. Jama 2003; 290: 1479-1485.
  • 16 Land C, Rauch F, Glorieux FH. Cyclical intravenous pamidronate treatment affects metaphyseal modeling in growing patients with osteogenesis imperfecta. J Bone Miner Res 2006; 21: 374-379.
  • 17 Land C, Rauch F, Montpetit K. et al. Effect of intravenous pamidronate therapy on functional abilities and level of ambulation in children with osteogenesis imperfecta. J Pediatr 2006; 148: 456-460.
  • 18 Land C, Rauch F, Munns CF. et al. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone 2006; 39: 901-906.
  • 19 Letocha AD, Cintas HL, Troendle JF. et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J Bone Miner Res 2005; 20: 977-986.
  • 20 Manias K, McCabe D, Bishop N. Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone 2006; 39: 652-657.
  • 21 Munns CF, Rauch F, Travers R, Glorieux FH. Effects of intravenous pamidronate treatment in infants with osteogenesis imperfecta: clinical and histomorphometric outcome. J Bone Miner Res 2005; 20: 1235-1243.
  • 22 Munns CF, Rauch F, Ward L, Glorieux FH. Maternal and fetal outcome after long-term pamidronate treatment before conception: a report of two cases. J Bone Miner Res 2004; 19: 1742-1745.
  • 23 Munns CF, Rauch F, Zeitlin L. et al. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res 2004; 19: 1779-1786.
  • 24 Petit MA, Beck TJ, Hughes JM. et al. Proximal femur mechanical adaptation to weight gain in late adolescence: a six-year longitudinal study. J Bone Miner Res 2008; 23: 180-188.
  • 25 Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet 1377; 363: 1377-1385.
  • 26 Rauch F, Munns C, Land C, Glorieux FH. Pamidronate in children and adolescents with osteogenesis imperfecta: effect of treatment discontinuation. J Clin Endocrinol Metab 2006; 91: 1268-1274.
  • 27 Rauch F, Neu C, Manz F, Schoenau E. The development of metaphyseal cortex − implications for distal radius fractures during growth. J Bone Miner Res 2001; 16: 1547-1555.
  • 28 Rauch F, Plotkin H, DiMeglio L. et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2007 Pediatric Official Positions. J Clin Densitom 2008; 11: 22-28.
  • 29 Rauch F, Plotkin H, Travers R. et al. Osteogenesis imperfecta types I, III, and IV: effect of pamidronate therapy on bone and mineral metabolism. J Clin Endocrinol Metab 2003; 88: 986-992.
  • 30 Rauch F, Plotkin H, Zeitlin L, Glorieux FH. Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy. J Bone Miner Res 2003; 18: 610-614.
  • 31 Rauch F, Travers R, Glorieux FH. Pamidronate in children with osteogenesis imperfecta: histomorphometric effects of long-term therapy. J Clin Endocrinol Metab 2006; 91: 511-516.
  • 32 Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest 2002; 110: 1293-1299.
  • 33 Sakkers R, Kok D, Engelbert R. et al. Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet 2004; 363: 1427-1431.
  • 34 Schoenau E, Neu CM, Beck B. et al. Bone mineral content per muscle cross-sectional area as an index of the functional muscle-bone unit. J Bone Miner Res 2002; 17: 1095-1101.
  • 35 Schoenau E, Neu CM, Mokov E. et al. Influence of puberty on muscle area and cortical bone area of the forearm in boys and girls. J Clin Endocrinol Metab 2000; 85: 1095-1098.
  • 36 Schoenau E, Neu CM, Rauch F, Manz F. The development of bone strength at the proximal radius during childhood and adolescence. J Clin Endocrinol Metab 2001; 86: 613-618.
  • 37 Specker BL, Johannsen N, Binkley T, Finn K. Total body bone mineral content and tibial cortical bone measures in preschool children. J Bone Miner Res 2001; 16: 2298-2305.