Subscribe to RSS
DOI: 10.1055/s-0038-1629453
Experimentelle Untersuchung der Leberperfusion mit nichtdiffundierenden Radiotracern: Differenzierung der arteriellen und portal-venösen Perfusionskomponente durch Dekonvolutionsanalyse von First-Pass-Zeitaktivitätskurven
Experimental Investigation of the Perfusion of the Liver with Non-Diffusible Tracers - Differentiation of the Arterial and Portal-Venous Components by Deconvolution Analysis of First-Pass Time-Activity CurvesPublication History
Eingegangen:
25 April 1988
Publication Date:
04 February 2018 (online)

The transfer function of the liver perfusion is an idealised time-activity curve that could be registered over the liver if a non-diffusible tracer would be injected directly into the abdominal aorta and no tracer recirculation would occur. The reproducibility of the transfer function was experimentally investigated in foxhounds. Both the routes of tracer application and the modes of data evaluation were varied and the perfusion was investigated under physiological and pathological conditions. The transfer function was calculated by deconvolution analysis of first-pass time-activity curves using the matrix regularisation method. The transfer function showed clearly distinguishable arterial and portal-venous components. Repeated peripheral venous and central aortic applications resulted in reproducible curves. In addition to the arterial and portal-venous components the subcomponents of the portalvenous component could also be identified in the transfer function after ligation of the appropriate vessels. The accuracy of the mathematical procedure was tested by computer simulations. The simulation studies demonstrated also that the matrix regularisation technique is suitable for deconvolution analysis of time-activity curves even when they are significantly contaminated by statistical noise. Calculation of the transfer function of liver perfusion and of its quantitative parameters seems thus to be a reliable method for non-invasive investigation of liver hemodynamics under physiological and pathological conditions.
Zusammenfassung
Die Perfusionstransferfunktion der Leber wird als eine idealisierte Zeitaktivitätskurve definiert, die man nach intra-aortaler Applikation eines nichtdiffundierenden Tracers über der Leber messen würde, wenn eine Rezirkulation des Tracers ausgeschlossen wäre. Die Perfusionstransferfunktion bei normaler und pathologisch veränderter Leberperfusion wurde experimentell an Foxhounds untersucht, und ihre Reproduzierbarkeit unter unterschiedlichen Applikations- und Auswertebedingungen geprüft. Berechnet wurde sie durch Least-squares-Dekonvolutionsanalyse von First-Pass-Zeitaktivitätskurven. Die arterielle und portal-venöse Komponente der Perfusionstransferfunktion waren bei allen Tieren deutlich voneinander abgrenzbar. Wiederholte peripher-venöse und intra-aortale Applikationen ergaben gut reproduzierbare Perfusionstransferfunktionen. Durch Ligatur der A. hepatica propria, der V. portae sowie einzelner zuführender Gefäße dieser Vene konnten sowohl die globalen Komponenten (arterielle und portal-venöse) als auch die Subkomponenten der portal-venösen Komponente der Perfusionstransferfunktion identifiziert werden, was die Richtigkeit des Auswerteverfahrens bestätigt. Auch die durchgeführten Computersimulationen ergaben, daß die verwendete Technik der Matrixregularisation zur Dekonvolution von mit statistischem Rauschen behafteten First-Pass-Zeitaktivitätskurven geeignet ist und die Perfusionsparameter mit einer für klinischen Gebrauch ausreichenden Genauigkeit berechnet werden können. Die Bestimmung der Perfusionstransferfunktion und ihrer quantitativen Parameter scheint daher eine zuverlässige Methode zur nichtinvasiven Untersuchung der Hämodynamik der Leber unter physiologischen und pathologischen Bedingungen zu sein.
-
LITERATUR
- 1 Alderson P O, Douglass K H, Mendenhall K G. et al. Deconvolution analysis in radionuclide quantitation of left-to-right cardiac shunts. J Nucl Med 1979; 20: 502-6.
- 2 Biersack H J, Thelen M, Schulz D. et al. Die sequentielle Hepatospleno-Szintigraphie zur quantitativen Beurteilung der Leberdurchblutung. Röntgenforschung 1977; 126: 47-52.
- 3 Biersack H J, Janson R, Malotki D, Thelen M, Schulz D, Winkler C. Leberperfusions-Szintigraphie nach experimenteller Ligatur von A. hepatica bzw. V. portae beim Hund. NUC-Comp 1979; 10: 75-9.
- 4 Biersack H J, Torres J, Thelen M, Monzon O, Winkler C. Determination of liver and spleen perfusion by quantitative sequential scintigraphy: results in normal subjects and in patients with portal hypertension. Clin Nucl Med 1981; 06: 218-20.
- 5 Brendel A J, Commenges D, Salamon R, Ducassou D, Blanquet P. Deconvolution analysis of radionuclide angiocardiography curves: problems arising from fragmented bolus injections. Eur J Nucl Med 1983; 08: 93-8.
- 6 Cooley J W, Tukey J E. An algorithm for machine calculation of complex Fourier series. Math Comput 1965; 19: 297-301.
- 7 Coulam C M, Warner H R, Wood E H, Bassingthwaighte J B. A transfer function analysis of coronary and renal circulation calculated from upstream and downstream indicator-dilution curves. Circ Res 1966; 19: 879-90.
- 8 DeLand F H. Cerebral radionuclide angiography. Philadelphia - London - Toronto: Saunders; 1976: 90-1.
- 9 Fleming J S, Goddard B A. A technique for the deconvolution of the renogram. Phys Med Biol 1974; 19: 546-9.
- 10 Fleming J S, Humphries N L M, Karran S J, Goddard B A, Ackery D M. In vivo assessment of hepatic-arterial and portal-venous components of liver perfusion. J Nucl Med 1981; 22: 18-21.
- 11 Fleming J S, Ackery D M, Walmsley B H, Karran S J. Scintigraphic estimation of arterial and portal blood supplies to the liver. J Nucl Med 1983; 24: 1108-13.
- 12 Gamel J, Rousseau W F, Katholi C R, Mesel E. Pitfalls in digital computation of the impulse response of vascular beds from indicator-dilution curves. Circ Res 1973; 32: 516-23.
- 13 Gebhardt U, Buttermann G, Lehner K, Pabst H W. Radionuklid-Angiographie (RNA) und digitale Subtraktionsangiographie (DSA) zur Kontrolle von Katheterund Pumpenfunktionen sowie der Effizienz einer selektiven Zytostatikatherapie bei Lebermalignomen. In: Höfer R, Bergmann H. Hrsg. Radioaktive Isotope in Klinik und Forschung. Wien: Egermann; 1986. 17 215-20.
- 14 Goris M L, Briandet P A. A clinical and mathematical introduction to computer processing of scintigraphic images. New York: Raven Press; 1983: 116-9.
- 15 Gullquist R R, Fleming J S. Error analysis by simulation studies in renography deconvolution. Phys Med Biol 1987; 32: 383-95.
- 16 Hamilton W F. Handbook of physiology, Section 2: Circulation. Washington: American Physiological Society; 1962
- 17 Huet P M, Lavoie P, Viallet A. Simultaneous estimation of hepatic and portal blood flows by an indicator dilution technique. J Lab Clin Med 1973; 82: 836-46.
- 18 Huet P M, Goresky C A, Villeneuve J P, Marleau D, Lough J O. Assessment of liver microcirculation in human cirrhosis. J Clin Invest 1982; 70: 1234-44.
- 19 Juni J E, Gross M G, Meyers L J, Pitt S. Quantitative analysis of hepatic artery and portal vein blood flow by deconvolution analysis. In: Schmidt H A E, Ell P J, Britton K E. Hrsg. Nuklearmedizin in Forschung und Praxis. Stuttgart - New York: Schattauer; 1986: 302-4.
- 20 Kashiwagi T, Kimura K, Suematsu T, Schichiri M, Kamada T, Abe H. Heterogenous intrahepatic distribution of blood flow in humans. Eur J Nucl Med 1981; 06: 545-49.
- 21 Knapp W H, Singer P, Mittmann U, Helus F, Elfner R. Radionuclide assessment of hepatic artery and portal vein blood flow. Eur J Nucl Med 1981; 06: A18.
- 22 Kontos H A, Shapiro W, Mauck H P, Patterson J L. General and regional circulatory alterations in cirrhosis of the liver. Am J Med 1964; 37: 526-35.
- 23 Kroiss A, Herholz K, Peschl L. et al. Messung der regionalen Leberdurchblutung durch Inhalation von 133Xe. In: Höfer R, Bergmann H. Hrsg. Radioaktive Isotope in Klinik und Forschung. Wien: Egermann; 1986. 17 181-6.
- 24 Kuruc A, Caldicott W J H, Treves S. An improved deconvolution technique for the calculation of renal retention functions. Comput Biomed Res 1982; 15: 46-56.
- 25 Kuruc A, Treves S, Parker J A. Accuracy of deconvolution algorithms assessed by simulation studies. J Nucl Med 1983; 24: 258-63.
- 26 Lebrec D, Bataille C, Bercoff E, Valla D. Hemodynamic changes in patients with portal venous obstruction. Hepatology 1983; 03: 550-3.
- 27 Leveson S H, Wiggins P A, Giles G R, Parkin A, Robinson P J. Deranged liver blood flow patterns in the detection of liver metastases. Br J Surg 1985; 72: 128-30.
- 28 Moreno A H, Burchell A R, Rousselot L M, Panke W F, Slafsky S F, Burke J H. Portal blood flow in cirrhosis of the liver. J Clin Invest 1967; 46: 436-45.
- 29 Moser E, Oxenius B, Sauerbruch T. Die Leberperfusions-Szintigraphie: Methodik, Normalwerte und Ergebnisse der Verlaufsbeobachtung von Patienten mit Ösophagusvarizen. Nucl-Med 1985; 24: 185-90.
- 30 Murray J F, Dawson A M, Sherlock S. Circulatory changes in chronic liver disease. Am J Med 1958; 24: 358-67.
- 31 Nagy Z, Nyitrai L, Csépke K, Fodor M. Alteration of the hemodynamics of various organs in Budd-Chiari syndrome. In: Schmidt H A E, Vauramo E. Hrsg. Nuklearmedizin in Forschung und Praxis. Stuttgart - New York: Schattauer; 1984: 377-82.
- 32 Newman E V, Merrell M, Genecin A, Monge C, Milnor W R, McKeever W P. The dye dilution method for describing the circulation. An analysis of factors shaping the time-concentration curves. Circulation 1951; 04: 735-46.
- 33 Nyitrai L, Fodor M. Use of transfer function (TF) for the study of the hepatic circulation. Eur J Nucl Med 1983; 08: A41.
- 34 Nyitrai L. A transzfer függvény értelmezése és szârmtâsa. Izotöptechnika 1983; 26: 197-214.
- 35 Nyitrai L. Simulation experiments to verify the interpretations of transfer function (TF). In: Schmidt H A E, Vauramo E. Hrsg. Nuklearmedizin in Forschung und Praxis. Stuttgart - New York: Schattauer; 1984: 371-6.
- 36 Phillips D L. A technique for the numerical solution of certain equations of the first kind. J Assoc Comp Mach 1962; 09: 84-97.
- 37 Rypins E B, Henderson J M, Fajman W, Sarper R, Kutner M, Warren W D. Portal venous-total hepatic flow ratio by radionuclide angiography. J Surg Res 1981; 31: 463-8.
- 38 Sarper R, Fajman W A, Rypins E B, Henderson J M, Tarcan Y A, Galambos J T, Warren W D. A noninvasive method for measuring portal venous/total hepatic blood flow by hepatosplenic radionuclide angiography. Radiology 1981; 141: 179-84.
- 39 Sarper R, Tarcan Y A. An improved method of estimating the portal venous fraction of total hepatic blood flow from computerized radionuclide angiography. Radiology 1983; 147: 559-62.
- 40 Schmid M Leber. In: Siegenthaler W. Hrsg. Klinische Pathophysiologie. Stuttgart: Georg Thieme; 1979: 817-49.
- 41 Schmitz-Feuerhake I, Huchzermeyer H, Reblin T. Determination of the specific blood flow of the liver by inhalation of radioactive rare gases. Acta Hepato-Gastroenterol 1975; 22: 150-8.
- 42 Sikuler E, Kravetz D, Groszmann R J. Evolution of portal hypertension and mechanisms involved in its maintenance in a rat model. Am J Physiol 1985; 248: G618-25.
- 43 Sorenson J A, Phelps M E. Physics in nuclear medicine. New York: Grune and Stratton; 1980
- 44 Starmer C F, Clark D O. Computer computations of cardiac output using the gamma function. J Appl Physiol 1970; 28: 219-20.
- 45 Szabö Z, Vosberg H, Kistenich H, Segall M, Feinendegen L E. Kinetics of different radiocolloids in the liver measured by deconvolution analysis. Eur J Nucl Med 1983; 08: A41.
- 46 Szabö Z, Vosberg H, Kistenich H, Feinendegen L E. Deconvolution analysis of hepatobiliary studies with 99mTc-Hepatobida. In: Schmidt H A E, Adam W E. Hrsg. Nuklearmedizin Darstellung von Metabolismen und Organfunktionen. Stuttgart - New York: Schattauer; 1984: 470-3.
- 47 Szabö Z, Vosberg H, Segall M, Feinendegen L E. Messung der mittleren Retentionszeiten 99mTc-markierter HSA-Millimikrosphären in der Leber - klinische Ergebnisse bei Patienten mit operiertem Mammakarzinom. Nucl-Med 1984; 23: 171-6.
- 48 Szabö Z, Vosberg H, Sondhaus C A, Feinendegen L E. Model identification and estimation of organ function parameters using radioactive tracers and the impulse response function. Eur J Nucl Med 1985; 11: 265-74.
- 49 Szabö Z, Nyitrai L, Sondhaus C. Effects of noise and digital filtering on the parameters calculated from the impulse response function. Eur J Nucl Med 1987; 13: 148-54.
- 50 Townsend A A, Kelso A F. Influence of dual inflows on canine hepatic circulation studies made with external scintillation detectors. J Nucl Med 1968; 09: 192-7.
- 51 Twomey S. On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J Ass Comp Mach 1963; 10: 97-101.
- 52 Twomey S. The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements. J Franklin Inst 1965; 279: 95-109.
- 53 Valentinuzzi M, Townsend A A, Kelso A F. A study of the liver circulation by indicatordilution method with a conductivity cell. J Am Osteopath Assoc 1971; 70: 1093-6.
- 54 Valentinuzzi M, Valentinuzzi M E. Newman’s chamber models in the study of blood circulation through the liver and heart. Bull Math Biol 1973; 35: 19-29.
- 55 Valentinuzzi M E, Volachec E M M. Discrete deconvolution. Med Biol Eng 1975; 13: 123-5.
- 56 Vaughan C L. Smoothing and differentiation of displacemenl-time data: An application of splines and digital filtering. Int J Biomed Comput 1982; 13: 375-86.
- 57 Wayne L W. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol 1985; 249: G549-56.
- 58 Yamamoto K, Tanada S, Kawamura M, Ishine M, Hamamoto K. Method of determining transfer functions in the case of the intravenous injection of radioactive tracers. Med Biol Eng Comput 1982; 20: 215-22.
- 59 Zatta G, Santambrogio R, Boccolari S. et al. Angioscintigraphic assessment of arterial and portal liver blood flow: comparison with splanchnic angiography. Nucl-Med 1987; 26: 83-6.
- 60 Zierler K L. Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965; 16: 309-21.
- 61 Zöckler C E, Draese K, Lesch P, Strosche H, Hoff W, Kachru J K. Stricter selection criteria improve the results of shunt surgery. Hepatogastroenterology 1985; 32: 279-83.