RSS-Feed abonnieren
DOI: 10.1055/s-0038-1629355
Husten
Übersicht zum Kenntnisstand zu den MechanismenCoughThe current understanding of its mechanismsPublikationsverlauf
Eingereicht am:18. Juni 2013
angenommen am:25. Juni 2013
Publikationsdatum:
31. Januar 2018 (online)

Zusammenfassung
Husten, ein physikalischer Abwehrmechanismus, entstehend aus einem Zusammenspiel eines erhöhten intrathorakalen Druckes, einer Verminderung des Atemwegswiderstandes und eines Glottisverschlusses wird durch einen neurologischen Schaltkreis geregelt. Dieser besteht aus einem vielfältigen Rezep torsystem mit capsaicinsensiblen und -unsensiblen Rezeptoren in den oberen und den großen Atemwegen. Die vagalen afferenten Fasern enden im Nucleus tractus solitarius des Hirnstammes, wo die Signalübertragung über Glutamat- und Neurokininsynapsen stattfindet, beeinflusst von Steuerungsneuronen und über die normalen efferenten respiratorischen Motoneuronen zu den respiratorischen Muskeln gelangt.
Summary
Cough a physical defense mechanism generated by the interaction of a high intrathoracic pressure, a reduced airway diameter and the closure of the glottis, is controlled by a neurological control system. It consists of a diverse receptor system with capsaicin sensitive and capsaicin insensitive receptors in the upper airways and the large airways. The afferent vagal nerves end in the nucleus tractus solitarius in the brainstem, where the signal transduction is regulated by glutamat and neurokine synpases, is influenced by gap neurons and is transferred by the normal respiratory neurons to the respiratory muscles.
-
Literatur
- 1 Ross BB, Gramiak R, Rahn H. Physical dynamics of the cough mechanism. J Appl Physiol 1955; 8: 264-268.
- 2 Chang AB. The physiology of cough. Paediatr Respir Rev 2006; 7: 2-8.
- 3 Carr MJ, Lee LY. Plasticity of peripheral mechanisms of cough. Respir Physiol Neurobiol 2006; 28: 298-311.
- 4 McAlexander MA, Carr MJ. Peripheral mechanisms I: plasticity of peripheral pathways. Hand Exp Pharmacol 2009; 187: 129-154.
- 5 Kollarik M, Undem BJ. Sensory transduction in cough associated nerves. Respir Physiol Neurobiol 2006; 152: 243-254.
- 6 Lee MG, Kollarik M, Chuaychoo B, Undem BJ. Ionotropic and metabotropic receptor mediated airway sensory nerve activation. Pulm Pharmacol Ther 2004; 17: 355-360.
- 7 Kollarik M, Ru F, Undem BJ. Acid-sensitive vagal sensory pathways and cough. Pulm Pharmacol Ther 2007; 20: 402-411.
- 8 Geppetti P, Patacchini R, Nassini R, Materazzi S. Cough: The emerging role of the TRPA1 channel. Lung 2010; 1 (Suppl. 01) S63-68.
- 9 Undem BJ, Carr MJ. Targeting primary afferent nerves for novel antitussive therapy. Chest 2010; 137: 177-184.
- 10 Canning BJ. Central regulation of the cough reflex: therapeutic implications. Pulm Pharmacol Ther 2009; 22: 75-81.
- 11 Canning BJ, Chou Yl. Cough sensors. I. Physiological and pharmacological properties of the afferent nerves regulating cough. Handb Exp Pharmacol 2009; 187: 23-47.
- 12 Grattan TJ, Marshall AE, Higgins KS, Morice AH. The effect of inhaled and oral dextromethorphan on citric acid induce cough in man. Br J Clin Pharmacol 1995; 39: 261-263.
- 13 Kamei J, Tanihara H, Igarashi H, Kasuya Y. Effects of N-methyl-D-asparate antagonists on the cough reflex. Eur J Pharmacol 1989; 168: 153-158.
- 14 Kotzer CJ, Hay DW, Dondio G. et al. The antitussive activity of delta-opioid receptor stimulation in guinea pigs. J Phramacol Exp Ther 2000; 292: 803-809.
- 15 Chapman RW, House A, Liu F. et al. Antitussive activity of the tachykinin NK3 receptor antagonist, CP-99994, in dogs. Eur J Pharmacol 2004; 485: 329-332.
- 16 Haji A, Kimura S, Ohi Y. A model of the central regulatory system for cough reflex. Biol Pharm Bull 2013; 36: 501-518.
- 17 Haji A, Ohi Y, Kimura S. Cough-related neurons in the nucleus tractus solitarius of decerebrate cats. Neuroscience 2012; 218: 100-109.
- 18 Thach BT. Maturation of cough and other reflexes that protect the fetal and neonatal airway. Pulm Pharmacol Ther 2007; 20: 365-370.