Nervenheilkunde, Table of Contents Nervenheilkunde 2009; 28(05): 01-03DOI: 10.1055/s-0038-1628641 Thema zum Schwerpunkt Schattauer GmbH Mitochondriale Störungen G Gille , H ReichmannRecommend Article Abstract Buy Article Full Text References Literatur 1 Anderson JJ. et al. No evidence for altered muscle mitochondrial function in Parkinson’s disease. J Neurol Neurosurg Psychiatry 1993; 56: 477-480. 2 Andres-Mateos E. et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. PNAS USA 2007; 104: 14807-14812. 3 Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J Bioenerg Biomembr 1999; 31: 347-366. 4 Barroso N. et al. Respiratory chain enzyme activities in lymphocytes from untreated patients with Parkinson disease. Clin Chem 1993; 39: 667-669. 5 Barsoum MJ. et al. Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 2006; 25: 3900-3911. 6 Beilina A. et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. PNAS USA 2005; 102: 5703-5708. 7 Bender A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38: 515-517. 8 Bender A. et al. Dopaminergic midbrain neurons are the prime target for mitochondrial DNA deletions. J Neurol 2008; 255: 1231-1235. 9 Benecke R, Strumper P, Weiss H. Electron transfer complexes I and IV of platelets are abnormal in Parkinson’s disease but normal in Parkinson-plus syndromes. Brain 1993; 116: 1451-1463. 10 Bindoff LA. et al. Mitochondrial function in Parkinson’s disease. Lancet 1989; 02: 49. 11 Blake CI. et al. Platelet mitochondrial respiratory chain function in Parkinson’s disease. Mov Disord 1997; 12: 3-8. 12 Blin O. et al. Mitochondrial respiratory failure in skeletal muscle from patients with Parkinson’s disease and multiple system atrophy. J Neurol Sci 1994; 125: 95-101. 13 Borland MK. et al. Relationships among molecular genetic and respiratory properties of Parkinson’s disease cybrid cells show similarities to Parkinson’s brain tissues. Biochim Biophys Acta 2009; 1792: 68-74. 14 Bravi D. et al. Effect of aging and dopaminomimetic therapy on mitochondrial respiratory function in Parkinson’s disease. Mov Disord 1992; 07: 228-231. 15 Brown MR, Sullivan PG, Geddes JW. Synaptic mitochondria are more susceptible to Ca2+ overload than nonsynaptic mitochondria. J Biol Chem 2006; 281: 11658-11668. 16 Canet-Aviles RM. et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. PNAS USA 2004; 101: 9103-9108. 17 Cardellach F. et al. Mitochondrial respiratory chain activity in skeletal muscle from patients with Parkinson’s disease. Neurology 1993; 43: 2258-2262. 18 Cassarino DS. et al. Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta 1997; 1362: 77-86. 19 Chan CS. et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 2007; 447: 1081-1086. 20 Chen CM. et al. Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol Dis. 2008 Epub Dez 9.. 21 Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007; 130: 548-562. 22 Chinopoulos C, Adam-Vizi V. Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease. J Neurochem 2001; 76: 302-306. 23 Cole NB. et al. Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 2008; 314: 2076-2089. 24 Cooper JM. et al. L-dihydroxyphenylalanine and complex I deficiency in Parkinson’s disease brain. Mov Disord 1995; 10: 295-297. 25 Darios F. et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 2003; 12: 517-526. 26 Davey GP, Peuchen S, Clark JB. Energy thresholds in brain mitochondria. Potential involvement in neurodegeneration. J Biol Chem 1998; 273: 12753-12757. 27 Davis GC. et al. Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1979; 01: 249-254. 28 Detmer SA, Chan DC. Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol 2007; 08: 870-879. 29 Devi L. et al. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 2008; 283: 9089-9100. 30 DiDonato S. et al. Respiratory chain and mitochondrial DNA in muscle and brain in Parkinson’s disease patients. Neurology 1993; 43: 2262-2268. 31 Esteves AR. et al. Oxidative Stress involvement in alpha-synuclein oligomerization in Parkinsons disease cybrids. Antioxid Redox Signal. 2008 Epub Aug 21.. 32 Esteves AR. et al. Mitochondrial function in Parkinson’s disease cybrids containing an nt2 neuron-like nuclear background. Mitochondrion 2008; 08: 219-228. 33 Exner N. et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 2007; 27: 12413-12418. 34 Gautier CA, Kitada T, Shen J. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. PNAS USA 2008; 105: 11364-11369. 35 Gellerich FN. et al. The problem of interlab variation in methods for mitochondrial disease diagnosis: enzymatic measurement of respiratory chain complexes. Mitochondrion 2004; 04: 427-439. 36 Gille G, Reichmann H. Ursachen des idiopathischen Parkinson-Syndroms – Stand 2005. Update on etiopathogenesis of idiopathic Parkinson’s syndrome. Akt Neurol 2005; 32: S75-S87. 37 Gloeckner CJ. et al. The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Hum Mol Genet 2006; 15: 223-232. 38 Gomez-Lazaro M. et al. 6-Hydroxydopamine (6-OHDA) induces Drp1-dependent mitochondrial fragmentation in SH-SY5Y cells. Free Radic Biol Med 2008; 44: 1960-1969. 39 Gu M. et al. Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseases. J Neurol Sci 1998; 158: 24-29. 40 Haas RH. et al. Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson’s disease. Ann Neurol 1995; 37: 714-722. 41 Hanagasi HA. et al. Mitochondrial complex I, II/III, and IV activities in familial and sporadic Parkinson’s disease. Int J Neurosci 2005; 115: 479-493. 42 Haque ME. et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. PNAS USA 2008; 105: 1716-1721. 43 Hashimoto M. et al. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromolecular Med 2003; 04: 21-36. 44 Hattori N. et al. . Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson’s disease. Ann Neurol 1991; 30: 563-571. 45 Hoepken HH. et al. Parkinson patient fibroblasts show increased alpha-synuclein expression. Exp Neurol 2008; 212: 307-313. 46 Hoepken HH. et al. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol Dis 2007; 25: 401-411. 47 Iaccarino C. et al. Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 2007; 16: 1319-1326. 48 Isobe C. et al. Increase of oxidized/total coenzyme Q-10 ratio in cerebrospinal fluid in patients with Parkinson’s disease. J Clin Neurosci 2007; 14: 340-343. 49 Jenner P. Oxidative stress in Parkinson’s disease. Ann Neurol 2003; 53: S26-S36. 50 Jin J. et al. Quantitative proteomic analysis of mitochondrial proteins: relevance to Lewy body formation and Parkinson’s disease. Brain Res Mol Brain Res 2005; 134: 119-138. 51 Keeney PM. et al. Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 2006; 26: 5256-5264. 52 Khusnutdinova E. et al. A mitochondrial etiology of neurodegenerative diseases: evidence from Parkinson’s disease. Ann N Y Acad Sci 2008; 1147: 1-20. 53 Kim Y. et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 2008; 377: 975-980. 54 Kingsbury AE. et al. Metabolic enzyme expression in dopaminergic neurons in Parkinson’s disease: an in situ hybridization study. Ann Neurol 2001; 50: 142-149. 55 Klivenyi P. et al. Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 2006; 21: 541-548. 56 Kraytsberg Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 2006; 38: 518-520. 57 Krige D. et al. Platelet mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson Disease Research Group. Ann Neurol 1992; 32: 782-788. 58 Kuroda Y. et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 2006; 15: 883-895. 59 Langston JW. et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983; 219: 979-980. 60 Lev N. et al. Oxidative insults induce DJ-1 upregulation and redistribution: Implications for neuroprotection. Neurotoxicology 2008; 29: 397-405. 61 Luoma PT. et al. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology 2007; 69: 1152-1159. 62 Mann VM. et al. Brain, skeletal muscle and platelet homogenate mitochondrial function in Parkinson’s disease. Brain 1992; 115: 333-342. 63 Marongiu R. et al. Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J Neurochem. 2009 Epub Jan 24.. 64 Martin MA. et al. Respiratory-chain enzyme activities in isolated mitochondria of lymphocytes from untreated Parkinson’s disease patients. GrupoCentro de Trastornos del Movimiento. Neurology 1996; 46: 1343-1346. 65 Martins LM. et al. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 2002; 277: 439-444. 66 Martins LM. et al. Binding specificity and regulation of the serine protease and PDZ domains of HtrA2/Omi. J Biol Chem 2003; 278: 49417-49427. 67 Meuer K. et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 2007; 14: 651-661. 68 Miller GW. et al. Immunochemical analysis of dopamine transporter protein in Parkinson’s disease. Ann Neurol 1997; 41: 530-539. 69 Mizuno Y. et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun 1989; 163: 1450-1455. 70 Mortiboys H. et al. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 2008; 64: 555-565. 71 Müftüoglu M. et al. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov Disord 2004; 19: 544-548. 72 Nakagawa-Hattori Y. et al. Is Parkinson’s disease a mitochondrial disorder?. J Neurol Sci 1992; 107: 29-33. 73 Narendra D. et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 2008; 183: 795-803. 74 Nicklas WJ, Vyas I, Heikkila RE. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci 1985; 36: 2503-2508. 75 Paisan-Ruiz C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004; 44: 595-600. 76 Palacino JJ. et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 2004; 279: 18614-18622. 77 Parihar MS. et al. Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci 2008; 65: 1272-1284. 78 Parker Jr. WD, Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol 1989; 26: 719-723. 79 Parker Jr. WD, Parks JK. Mitochondrial ND5 mutations in idiopathic Parkinson’s disease. Biochem Biophys Res Commun 2005; 326: 667-669. 80 Parker Jr. WD, Parks JK, Swerdlow RH. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res. 2008 1189. Epub 2007 Nov 1.: 215–218.. 81 Piccoli C. et al. Coexistence of Mutations in PINK1 and Mitochondrial DNA in Early Onset Parkinsonism. J Med Genet 2008; 45: 596-602. 82 Piccoli C. et al. Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem Res 2008; 33: 2565-2574. 83 Poole AC. et al. The PINK1/Parkin pathway regulates mitochondrial morphology. PNAS USA 2008; 105: 1638-1643. 84 Pridgeon JW. et al. PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1. PLoS Biol 2007; 05: e172. 85 Pyle A. et al. Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol 2005; 57: 564-567. 86 Reeve AK. et al. Nature of mitochondrial DNA deletions in substantia nigra neurons. Am J Hum Genet 2008; 82: 228-235. 87 Reichmann H. et al. Unaltered respiratory chain enzyme activity and mitochondrial DNA in skeletal muscle from patients with idiopathic Parkinson’s syndrome. Eur Neurol 1994; 34: 263-267. 88 Reichmann H, Riederer P. Biochemical analysis of respiratory chain enzymes in different brain regions of patients with Parkinson’s disease. BMBFT Symposium “Morbus Parkinson und andere Basalganglienerkrankungen”, Bad Kissingen. 1989 89 Richter G. et al. Novel mitochondrial DNA mutations in Parkinson’s disease. J Neural Transm 2002; 109: 721-729. 90 Schapira AH. et al. Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1989; 333: 1269. 91 Schapira AH. et al. Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann Neurol 1998; 44: S89-S98. 92 Schapira AH. et al. Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 1990; 55: 2142-2145. 93 Sheehan JP. et al. Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson’s disease. J Neurochem 1997; 68: 1221-1233. 94 Shen J. Protein kinases linked to the pathogenesis of Parkinson’s disease. Neuron 2004; 44: 575-577. 95 Simon DK. et al. Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson’s disease. Neurobiol Aging 2004; 25: 71-81. 96 Sipos I, Tretter L, Adam-Vizi V. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 2003; 84: 112-118. 97 Smigrodzki R, Parks J, Parker WD. High frequency of mitochondrial complex I mutations in Parkinson’s disease and aging. Neurobiol Aging 2004; 25: 1273-1281. 98 Spees JL. et al. Mitochondrial transfer between cells can rescue aerobic respiration. PNAS USA 2006; 103: 1283-1288. 99 Strauss KM. et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 2005; 14: 2099-2111. 100 Swerdlow RH. et al. Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson’s disease family. Ann Neurol 1998; 44: 873-881. 101 Swerdlow RH. et al. Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 1996; 40: 663-671. 102 Trimmer PA. et al. Parkinson’s disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem 2004; 88: 800-812. 103 Trimmer PA. et al. Abnormal mitochondrial morphology in sporadic Parkinson’s and Alzheimer’s disease cybrid cell lines. Exp Neurol 2000; 162: 37-50. 104 Um JW. et al. Molecular interaction between parkin and PINK1 in mammalian neuronal cells. Mol Cell Neurosci. 2009 Epub Jan 8.. 105 Valente EM. et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304: 1158-1160. 106 van der Walt JM. et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet 2003; 72: 804-811. 107 Verstreken P. et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005; 47: 365-378. 108 Vila M, Ramonet D, Perier C. Mitochondrial alterations in Parkinson’s disease: new clues. J Neurochem 2008; 107: 317-328. 109 Vives-Bauza C. et al. Sequence analysis of the entire mitochondrial genome in Parkinson’s disease. Biochem Biophys Res Commun 2002; 290: 1593-1601. 110 Weihofen A. et al. Pink1 Forms a Multiprotein Complex with Miro and Milton, Linking Pink1 Function to Mitochondrial Trafficking (dagger). Biochemistry. 2009 Epub Jan 20.. 111 West AB. et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. PNAS USA 2005; 102: 16842-16847. 112 Whitworth AJ. et al. Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis Model Mech 2008; 01: 168-174. 113 Wiedemann FR. et al. Detection of respiratory chain defects in cultivated skin fibroblasts and skeletal muscle of patients with Parkinson’s disease. Ann N Y Acad Sci 1999; 893: 426-429. 114 Winkler-Stuck K. et al. Re-evaluation of the dysfunction of mitochondrial respiratory chain in skeletal muscle of patients with Parkinson’s disease. J Neural Transm 2005; 112: 499-518. 115 Winkler-Stuck K. et al. Effect of coenzyme Q10 on the mitochondrial function of skin fibroblasts from Parkinson patients. J Neurol Sci 2004; 220: 41-48. 116 Wood-Kaczmar A. et al. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS ONE 2008; 03: e2455. 117 Yang Y. et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. PNAS USA 2006; 103: 10793-10798. 118 Yang Y. et al. Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery. PNAS USA 2008; 105: 7070-7075. 119 Yoshino H. et al. Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1992; 04: 27-34. 120 Yun J. et al. Loss-of-function analysis suggests that Omi/HtrA2 is not an essential component of the PINK1/PARKIN pathway in vivo. J Neurosci 2008; 28: 14500-14510. 121 Zhang L. et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet 2005; 14: 2063-2073. 122 Zhou C. et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A 2008; 105: 12022-12027. 123 Zhou W. et al. The oxidation state of DJ-1 regulates its chaperone activity toward alpha-synuclein. J Mol Biol 2006; 356: 1036-1048. 124 Zimprich A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004; 44: 601-607.