Nervenheilkunde 2013; 32(04): 206-208
DOI: 10.1055/s-0038-1628498
Autonomes Nervensystem
Schattauer GmbH

Barorezeptorstimulation bei therapierefraktärem Bluthochdruck

Baroreceptor stimulation in treatment resistant arterial hypertension
J. Jordan
1   Institut für Klinische Pharmakologie, Medizinische Hochschule Hannover
,
J. Tank
1   Institut für Klinische Pharmakologie, Medizinische Hochschule Hannover
› Author Affiliations
Further Information

Publication History

received: eingegangen am: 19 October 2012

accepted: angenommen am: 22 October 2012

Publication Date:
24 January 2018 (online)

Zusammenfassung

Therapierefraktärer Bluthochdruck liegt vor, wenn eine Behandlung mit mindestens drei Antihypertensiva in ausreichender Dosierung, von denen eines ein Diuretikum sein sollte, den Blutdruck nicht kontrolliert und keine sekundären Hypertonieursachen vorliegen. Für medikamentös austherapierte Patienten und bei hohem kardiovaskulärem Risiko wurde die elektrische Baroreflexstimulation entwickelt. Dabei soll dem Gehirn mittels einer elektrischen Stimulation von Barorezeptoren vorgegaukelt werden, dass der Blutdruck ansteigt, um so eine reflektorische Reduktion der Sympathikusaktivität zu erzielen. Tatsächlich bewirkt eine elektrische Stimulation des Karotissinus eine akute Reduktion von mikroneurografisch abgeleiteter Sympathikusaktivität und Blutdruck bei Patienten mit refraktärem Bluthochdruck. Gleichzeitig reduziert sich die Reninkonzentration im venösen Blut, was für eine Hemmung der renalen Sympathikusaktivität spricht. Die physiologische Baroreflexregulation von Herzfrequenz und Sympathikus bleibt erhalten. Erste Langzeiterfahrungen in klinischen Studien sprechen dafür, dass mittels Baroreflexstimulation bei einem Teil der Patienten eine langfristige Blutdrucksenkung erreicht werden kann. Die Daten aus kontrollierten klinischen Studien sind jedoch nicht hinreichend, um einen breiteren klinischen Einsatz zu rechtfertigen.

Summary

Treatment resistant arterial hypertension is diagnosed when concurrent use of three properly dosed antihypertensive medications including a diuretic is not sufficient to control blood pressure. Secondary causes have to be excluded. Electrical carotid sinus stimulation has been developed for high risk patients not responding to maximal antihypertensive therapy. In the brain, electrical baroreceptor stimulation is perceived as further blood pressure increase, which leads to reflex sympathetic inhibition. Indeed, electrical carotid sinus stimulation acutely reduces muscle sympathetic nerve activity and blood pressure in patients with treatment resistant hypertension. Moreover, venous renin concentration decreases suggesting that renal sympathetic activity is also attenuated. Physiological baroreflex control is not perturbed. Results from clinical trials suggest that electrical carotid sinus stimulation elicits a sustained blood pressure reduction in a subgroup of patients. However, data from controlled clinical trials are not yet sufficient to justify widespread clinical use.

 
  • Literatur

  • 1 Wolf-Maier K, Cooper RS, Kramer H. et al. Hypertension treatment and control in five European countries, Canada, and the United States. Hypertension 2004; 43 (01) 10-7.
  • 2 Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288 (23) 2981-97.
  • 3 Calhoun DA, Jones D, Textor S. et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 2008; 51 (06) 1403-19.
  • 4 Cuspidi C, Macca G, Sampieri L. et al. High prevalence of cardiac and extracardiac target organ damage in refractory hypertension. J Hypertens 2001; 19 (11) 2063-70.
  • 5 Ketch T, Biaggioni I, Robertson R, Robertson D. Four Faces of Baroreflex Failure: Hypertensive Crisis, Volatile Hypertension, Orthostatic Tachycardia, and Malignant Vagotonia. Circulation 2002; 105 (21) 2518-23.
  • 6 Heusser K, Tank J, Luft FC, Jordan J. Baroreflex failure. Hypertension 2005; 45 (05) 834-9.
  • 7 Cowley AJ, Liard JF, Guyton AC. Role of baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circ Res 1973; 32 (05) 564-76.
  • 8 KRIEGER EM. Neurogenic hypertension in the rat. Circ Res 1964; 15: 511-21.
  • 9 Thrasher TN. Unloading arterial baroreceptors causes neurogenic hypertension. Am J Physiol Regul Integr Comp Physiol 2002; 282 (04) R1044-R1053.
  • 10 Peters TK, Koralewski HE, Zerbst E. The principle of electrical carotid sinus nerve stimulation: a nerve pacemaker system for angina pectoris and hypertension therapy. Ann Biomed Eng 1980; 08 (4–6): 445-58.
  • 11 Rothfeld EL, Parsonnet V, Raman KV, Zucker IR, Tiu R. The effect of carotid sinus nerve stimulation on cardiovascular dynamics in man. Angiology 1969; 20 (04) 213-8.
  • 12 Parsonnet V, Rothfeld EL, Raman KV, Myers GH. Electrical stimulation of the carotid sinus nerve. Surg Clin North Am 1969; 49 (03) 589-96.
  • 13 Tordoir JH, Scheffers I, Schmidli J. et al. An implantable carotid sinus baroreflex activating system: surgical technique and short-term outcome from a multi-center feasibility trial for the treatment of resistant hypertension. Eur J Vasc Endovasc Surg 2007; 33 (04) 414-21.
  • 14 Scheffers IJ, Kroon AA, Schmidli J. et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol 2010; 56 (15) 1254-8.
  • 15 Mohaupt MG, Schmidli J, Luft FC. Management of uncontrollable hypertension with a carotid sinus stimulation device. Hypertension 2007; 50 (05) 825-8.
  • 16 Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension 2004; 43 (02) 306-11.
  • 17 Lohmeier TE, Hildebrandt DA, Dwyer TM. et al. Renal denervation does not abolish sustained baroreflex-mediated reductions in arterial pressure. Hypertension 2007; 49 (02) 373-9.
  • 18 Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 2010; 376 (9756): 1903-9.
  • 19 Bhan V, Yan RT, Leiter LA. et al. Relation between obesity and the attainment of optimal blood pressure and lipid targets in high vascular risk outpatients. Am J Cardiol 2010; 106 (09) 1270-6.
  • 20 Lloyd-Jones DM, Evans JC, Larson MG, O’donnell CJ, Roccella EJ, Levy D. Differential control of systolic and diastolic blood pressure : factors associated with lack of blood pressure control in the community. Hypertension 2000; 36 (04) 594-9.
  • 21 Egan BM, Zhao Y, Axon RN, Brzezinski WA, Ferdinand KC. Uncontrolled and Apparent Treatment Resistant Hypertension in the United States, 1988 to 2008. Circulation. 2011 August 8 E-pub.
  • 22 Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension 2007; 49 (06) 1307-14.
  • 23 Lohmeier TE, Dwyer TM, Hildebrandt DA. et al. Influence of prolonged baroreflex activation on arterial pressure in angiotensin hypertension. Hypertension 2005; 46 (05) 1194-200.
  • 24 Schmidli J, Savolainen H, Eckstein F. et al. Acute device-based blood pressure reduction: electrical activation of the carotid baroreflex in patients undergoing elective carotid surgery. Vascular 2007; 15 (02) 63-9.
  • 25 Heusser K, Tank J, Engeli S. et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension 2010; 55 (03) 619-26.
  • 26 Delius W, Hagbarth KE, Hongell A, Wallin BG. General characteristics of sympathetic activity in human muscle nerves. Acta Physiol Scand 1972; 84: 65-81.
  • 27 Eckberg DL, Wallin BG, Fagius J, Lundberg L, Torebjork HE. Prospective study of symptoms after human microneurography. Acta Physiol Scand 1989; 137 (04) 567-9.
  • 28 Wallin BG, Sundlof G, Delius W. The effect of carotid sinus nerve stimulation on muscle and skin nerve sympathetic activity in man. Pflugers Arch 1975; 358 (02) 101-10.
  • 29 Wustmann K, Kucera JP, Scheffers I. et al. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension. Hypertension 2009; 54 (03) 530-6.
  • 30 Bisognano JD, Kaufman CL, Bach DS, Lovett EG, de LP. Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. J Am Coll Cardiol 2011; 57 (17) 1787-8.
  • 31 Bisognano JD, Bakris G, Nadim MK. et al. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled rheos pivotal trial. J Am Coll Cardiol 2011; 58 (07) 765-73.
  • 32 Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term followup in the Rheos Pivotal Trial. J Am Soc Hypertens 2012; 06 (02) 152-8.
  • 33 Hoppe UC, Brandt MC, Wachter R. et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens 2012; 06: 270-6.