Nuklearmedizin 2005; 44(04): 131-136
DOI: 10.1055/s-0038-1625755
Original Articles
Schattauer GmbH

Clinical value of amino acid imaging in paediatric brain tumours

Comparison with MRIDer klinische Wert der Darstellung kindlicher Hirntumore mit AminosäurenVergleich mit MRT
K. Lang
1   Departments of Nuclear Medicine
,
S. Kloska
2   Clinical Radiology
,
R. Straeter
3   Paediatric Oncology
,
C. H. Rickert
,
G. Goder
,
G. Kurlemann
6   Paediatric Neurology
,
A. Brentrup
7   Neurosurgery, University of Münster, Germany
,
O. Schober
1   Departments of Nuclear Medicine
,
M. Weckesser
1   Departments of Nuclear Medicine
› Author Affiliations
Further Information

Publication History

Received: 10 August 2004

in revised form: 08 February 2005

Publication Date:
11 January 2018 (online)

Summary

Purpose: To evaluate single photon emission computed tomography (SPECT) using the amino acid l-3-[123I]-α-methyl tyrosine (IMT) and contrast enhanced magnetic resonance imaging (MRI) as diagnostic tools in primary paediatric brain tumours in respect of non-invasive tumour grading. Patients, materials, methods: 45 children with primary brain tumours were retrospectively evaluated. IMT uptake was quantified as tumour/nontumour- ratio, a 4-value-scale was used to measure gadolinium enhancement on contrast enhanced MRI. Statistical analyses were performed to evaluate IMT uptake and gadolinium enhancement in low (WHO I/II) and high (WHO III/ IV) grade tumours and to disclose a potential relationship of IMT uptake to disruption of blood brain barrier as measured in corresponding MRI scans. Results: IMT uptake above background level was observed in 35 of 45 patients. IMT uptake was slightly higher in high grade tumours but the difference failed to attain statistical significance. Grading of individual tumours was neither possible by IMT SPECT nor by gadolinium enhanced MRI. Conclusion: IMT is accumulated in most brain tumours in children. Tumour grading was not possible using IMT or contrast enhancement as determined by MRI. Neither morphological nor functional imaging can replace histology in paediatric brain tumours.

Zusammenfassung

Ziel: Ziel dieser Studie war, die Wertigkeit der SPECT mit der Aminosäure Iod-123-α-Methyltyrosin (IMT) und der kontrastverstärkten Magnetresonanztomographie (MRT) als diagnostische Verfahren bei primären kindlichen Hirntumoren im Hinblick auf eine Malignitätseinschätzung zu überprüfen. Patienten, Material, Methoden: 45 Kinder mit primären Hirntumoren wurden retrospektiv untersucht. Die Aminosäureaufnahme wurde als Tumor/Nontumor- Quotient, die Kontrastmittelanreicherung quantitativ auf einer 4-Werte-Skala bestimmt. Es wurde überprüft, ob die Aminosäureaufnahme und die Kontrastmittelanreicherung bei niedrig- bzw. bei hochgradigen Hirntumoren signifikant verschieden sind und ob die Aminosäureaufnahme von einer Störung der Bluthirnschrankenfunktion abhängt, die mit der MRT gemessen wird. Ergebnisse: IMT wurde von 35 der 45 untersuchten Hirntumoren aufgenommen. Die IMT-Anreicherung war in hochgradigen Hirntumoren geringfügig intensiver im Vergleich zu niedriggradigen Tumoren, ohne dass der Unterschied statistisch signifikant war. Eine Malignitätseinschätzung war weder mit der IMTSPECT noch mit der kontrastverstärkten MRT möglich. Schlussfolgerung: IMT wird von den meisten kindlichen Hirntumoren aufgenommen. Eine Malignitätseinschätzung ist weder durch die IMT-SPECT noch durch das Kontrastmittelverhalten in der MRT möglich. Weder die funktionelle noch die morphologische Bildgebung kann die Histologie bei kindlichen Hirntumoren ersetzen.

 
  • References

  • 1 Alavi JB, Alavi A, Chawluk J. et al. Positron emission tomography in patients with glioma. A predictor of prognosis. Cancer 1988; 62: 1074-8.
  • 2 Asari S, Makabe T, Katayama S. et al. Assessment of the pathological grade of astrocytic gliomas using an MRI score. Neuroradiology 1994; 36: 308-10.
  • 3 Bader JB, Samnick S, Schaefer A. et al. Contribution of nuclear medicine to the diagnosis of recurrent brain tumors and cerebral radionecrosis. Radiologe 1998; 38: 924-9.
  • 4 Bader JB, Samnick S, Moringlane JR. et al. Evaluation of l-3-[123I]iodo-alpha-methyltyrosine SPET and [18F]fluorodeoxyglucose PET in the detection and grading of recurrences in patients pretreated for gliomas at follow-up: A comparative study with stereotactic biopsy. Eur J Nucl Med 1999; 26: 144-51.
  • 5 Barker 2nd FG, Chang SM, Valk PE. et al. 18-Fluorodeoxyglucose uptake and survival of patients with suspected recurrent malignant glioma. Cancer 1997; 79: 115-26.
  • 6 Barker 2nd FG, Chang SM, Huhn SL. et al. Age and the risk of anaplasia in magnetic resonancenonenhancing supratentorial cerebral tumors. Cancer 1997; 80: 936-41.
  • 7 Bergstrom M, Muhr C, Lundberg PO. et al. PET as a tool in the clinical evaluation of pituitary adenomas. J Nucl Med 1991; 32: 610-5.
  • 8 Chang L. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978; NS-26/2: 2780-9.
  • 9 De Witte O, Levivier M, Violon P. et al. Prognostic value positron emission tomography with (18F)fluoro-2-deoxy-D-glucose in the low-grade glioma. Neurosurgery 1996; 39: 470-6.
  • 10 De Witte O, Lefranc F, Levivier M. et al. FDG-PET as a prognostic factor in high-grade astrocytoma. J Neurooncol 2000; 49: 157-63.
  • 11 Delbeke D, Meyerowitz C, Lapidus RL. et al. Optimal cutoff levels of 18F-fluorodeoxyglucose uptake in the differentiation of low-grade from highgrade brain tumors with PET. Radiology 1995; 195: 47-52.
  • 12 Dooms GC, Hecht S, Brant-Zawadzki M. et al. Brain radiation lesions: MR imaging. Radiology 1986; 158: 149-55.
  • 13 Fulham MJ, Melisi JW, Nishimiya J. et al. Neuroimaging of juvenile pilocytic astrocytomas: an enigma. Radiology 1993; 189: 221-5.
  • 14 Glantz MJ, Hoffman JM, Coleman RE. et al. Identification of early recurrence of primary central nervous system tumors by (18F)fluorodeoxyglucose positron emission tomography. Ann Neurol 1991; 29: 347-55.
  • 15 Goldman S, Levivier M, Pirotte B. et al. Regional methionine and glucose uptake in high-grade gliomas: A comparative study on PET-guided stereotactic biopsy. J Nucl Med 1997; 38: 1459-62. Erratum in: J Nucl Med 1997; 38: 2002.
  • 16 Herholz K, Pietrzyk U, Voges J. et al. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 1993; 79: 853-8.
  • 17 Herholz K, Holzer T, Bauer B. et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998; 50: 1316-22.
  • 18 Kaatsch P, Rickert CH, Kuhl J. et al. Populationbased epidemiologic data on brain tumors in German children. Cancer 2001; 92: 3155-64.
  • 19 Kaschten B, Stevenaert A, Sadzot B. et al. Preoperative evaluation of 54 gliomas by PET with fluor- ine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998; 39: 778-85.
  • 20 Kuwert T, Woesler B, Morgenroth C. et al. Diagnosis of recurrent glioma with SPECT and iodine- 123-alpha-methyl tyrosine. J Nucl Med 1998; 39: 23-7.
  • 21 Langen KJ, Ziemons K, Kiwit JC. et al. 3-[123I]iodo-alpha-methyltyrosine and (methyl- 11C)-L-methionine uptake in cerebral gliomas: A comparative study using SPECT and PET. J Nucl Med 1997; 38: 517-22.
  • 22 Leeds NE, Jackson EF. Current imaging techniques for the evaluation of brain neoplasms. Curr Opin Oncol 1994; 6: 254-61.
  • 23 Lev MH, Ozsunar Y, Henson JW. et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 2004; 25: 214-21. Erratum in: AJNR Am J Neuroradiol 2004; 25: B1.
  • 24 Messing-Junger AM, Floeth FW, Pauleit D. et al. Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv Syst 2002; 18: 445-9.
  • 25 Mosskin M, von Holst H, Bergstrom M. et al. Positron emission tomography with 11C-methionine and computed tomography of intracranial tumours compared with histopathologic examination of multiple biopsies. Acta Radiol 1987; 28: 673-81.
  • 26 Ogawa T, Shishido F, Kanno I. et al. Cerebral glioma: Evaluation with methionine PET. Radiology 1993; 186: 45-53.
  • 27 Pauleit D, Floeth F, Tellmann L. et al. Comparison of O-(2-18F-fluoroethyl)-L-tyrosine PET and 3-123I-iodo-alpha-methyl-L-tyrosine SPECT in brain tumors. J Nucl Med 2004; 45: 374-81.
  • 28 Pirotte B, Goldman S, Bidaut LM. et al. Use of positron emission tomography (PET) in stereotactic conditions for brain biopsy. Acta Neurochir 1995; 134: 79-82.
  • 29 Rickert CH, Paulus W. Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 2001; 17: 503-11.
  • 30 Riemann B, Papke K, Hoess N. et al. Noninvasive grading of untreated gliomas: A comparative study of MR imaging and 3-(iodine 123)-L-alphamethyltyrosine SPECT. Radiology 2002; 225: 567-74.
  • 31 Schifter T, Hoffman JM, Hanson MW. et al. Serial FDG-PET studies in the prediction of survival in patients with primary brain tumors. J Comput Assist Tomogr 1993; 17: 509-61.
  • 32 Schmidt D, Gottwald U, Langen KJ. et al. 3-123I)iodo-alpha-methyl-L-tyrosine uptake in cerebral gliomas: Relationship to histological grading and prognosis. Eur J Nucl Med 2001; 28: 855-61.
  • 33 Schober O, Meyer GJ, Stolke D. et al. Brain tumor imaging using 11C-labeled L-methionine and D-methionine. J Nucl Med 1985; 26: 98-9.
  • 34 Sugahara T, Korogi Y, Kochi M. et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998; 171: 1479-86.
  • 35 Tovi M, Lilja A, Bergstrom M. et al. Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 1990; 31: 417-29.
  • 36 Utriainen M, Metsahonkala L, Salmi TT. et al. Metabolic characterization of childhood brain tumors: Comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 2002; 95: 1376-86.
  • 37 Weber WA, Dick S, Reidl G. et al. Correlation between postoperative 3-(123I)iodo-L-alpha-methyltyrosine uptake and survival in patients with gliomas. Nucl Med 2001; 42: 1144-50.
  • 38 Weckesser M, Matheja P, Rickert CH. et al. High uptake of L-3-(123I)iodo-alpha-methyl tyrosine in pilocytic astrocytomas. Eur J Nucl Med 2001; 28: 273-81.
  • 39 Woesler B, Kuwert T, Morgenroth C. et al. Non-invasive grading of primary brain tumours: Results of a comparative study between SPECT with 123I-alpha-methyl-tyrosine and PET with 18F-deoxyglucose. Eur J Nucl Med 1997; 24: 428-34.
  • 40 Wong JC, Provenzale JM, Petrella JR. Perfusion MR imaging of brain neoplasms. AJR Am J Roentgenol 2000; 174: 1147-57.