Nuklearmedizin 2005; 44(S 01): S38-S40
DOI: 10.1055/s-0038-1625213
Original Articles
Schattauer GmbH

Radiation oncology and functional imaging

Bestrahlung in der Onkologie und funktionelle Bildgebung
Th. Herrmann
1   Department of Radiotherapy and Radiation Oncology, and Centre of Innovation Competence Onco- Ray, Medical Faculty Carl Gustav Carus Dresden, Germany
› Author Affiliations
Further Information

Publication History

Received: 08 June 2005

in revised form: 14 September 2005

Publication Date:
11 January 2018 (online)

Summary:

PET/CT imaging is most likely to be of use in radiation oncology with patients who have poorly defined target volume areas, e.g. brain tumours, bronchogenic carcinoma, and cases of miscellaneous geographical miss. Other tumours that call for dose escalated radiotherapy, such as head and neck tumours, bronchogenic carcinoma, and prostate carcinomas may further benefit from an accurate delineation of the metabolically active tumour volume and its differentiation from surrounding healthy tissue, or tumour atelectasis.

Zusammenfassung:

Der größte Nutzen der PET-CT für die Radioonkologie ist bei Patienten zu erwarten, die schlecht definierte Targetvolumina haben (Hirntumoren, Bronchialkarzinome und sonstige „geographical miss“ Situationen). Bei Tumoren, bei denen eine Dosiseskalation notwendig erscheint, z.B. HNO-Tumoren, Bronchial- und Prostatakarzinome, ist ein weiterer Nutzen in einer korrekten Unterscheidung des metabolisch aktiven Tumorvolumens von dem umgebenden gesunden Gewebe zu erwarten, so z.B. bei Tumoratelektasen.

 
  • References

  • 1 Apisarnthanarax S, Chao KS. Current imaging paradigms in radiation oncology. Radiat Res 2005; 163: 1-25.
  • 2 Belderbos JS, De Jaeger K, Heemsbergen WD. et al. First results of a phase I/II dose escalation trial in non-small cell lung cancer using three-dimensional conformal raditherapy. Radiother Oncol 2003; 66: 119-26.
  • 3 Gregoire V. Is there any future in radiotherapy planning without the use of PET: unravelling the myth…. Radiother Oncol 2004; 73: 261-3.
  • 4 Nestle U, Walter K, Schmidt S. et al. 18F-deoxyglucose positron emission tomography (FDG-PET) fort he planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 1999; 44: 593-7.
  • 5 Saunders CA, Dussek JE, O´Doherty MJ. et al. Evuluation of fluorine-18-fluorodeoxyglucose whole body positron emission tomography imaging in the staging of lung cancer. Ann Thorac Surg 1999; 67: 790-7.
  • 6 Schmücking M, Baum RP, Bonnet R. et al. Correlation of histologic results with PET findings for tumor regression and survival in locally advanced non-small cell lung cancer after neoadjuvante treatment. Pathologe 2005; 26: 178-90.
  • 7 Schwartz DL, Ford E, Rajendran J. et al. FDGPET/ CT imaging for preradiotherapy staging of head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol. Phys 2005; 61: 129-36.
  • 8 Valk PE, Pounds TR, Hopkins DM. et al. Staging non-small cell lung cancer by whole-body positron emission tomographic imaging. Ann Thorac Surg 1995; 60: 1573-81.
  • 9 Van Tinteren H, Hoekstra OS, Smitt EF. et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-ell lung cancer: the PLUS multicentre randomised trial. Lancet 2002; 359: 1388-93.
  • 10 Vanuytsel LJ, Vansteenkiste JF, Stoobants SG. et al. The impact of 18F-fluoro-2-deoxy-D-glucose positron emission tomography(DFG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radiother Oncol 2000; 55: 317-26.
  • 11 Weder W, Schmid RA, Bruchhaus H. et al. Detection of extrathoracic metastases by positron emission tomography in lung cancer. Ann Thorac Surg 1998; 66: 886-92.