Tierarztl Prax Ausg G Grosstiere Nutztiere 2008; 36(02): 104-109
DOI: 10.1055/s-0038-1623940
Pferd
Schattauer GmbH

Spezifisches Verteilungsmuster der Knorpelelastizität und -dicke am Talus des Pferdes[*]

Specific distribution pattern of cartilage stiffness and thickness on the equine talus
J. Engl
1   Klinik für Pferde (Chirurgie) mit Lehrschmiede (Leiter: Prof. Dr. L.-F. Litzke), 2AG Biomathematik und Datenverarbeitung (Leiter: Dr. K. Failing) der Justus-Liebig-Universität Gießen
,
K. Failing
1   Klinik für Pferde (Chirurgie) mit Lehrschmiede (Leiter: Prof. Dr. L.-F. Litzke), 2AG Biomathematik und Datenverarbeitung (Leiter: Dr. K. Failing) der Justus-Liebig-Universität Gießen
,
L.-F. Litzke
1   Klinik für Pferde (Chirurgie) mit Lehrschmiede (Leiter: Prof. Dr. L.-F. Litzke), 2AG Biomathematik und Datenverarbeitung (Leiter: Dr. K. Failing) der Justus-Liebig-Universität Gießen
› Author Affiliations
Further Information

Publication History

Eingegangen: 15 January 2008

akzeptiert: 14 February 2008

Publication Date:
06 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: In der vorliegenden Arbeit wurden erstmals Referenzwerte für die Knorpelelastizität und Knorpeldicke am Talus des Pferdes ermittelt. Die postmortal durchgeführte Untersuchung umfasste 24 Pferde verschiedenen Alters (zwei Fohlen, ein Jährling, 21 adulte Tiere). Material und Methoden: Die Knorpelelastizität wurde an 23 Messpunkten mit einer auch intra vitam einsetzbaren Indentermesssonde (Art - scan® 200) getestet. Die Bestimmung der Knorpeldicke erfolgte mit einer Messlupe an 18 Messpunkten des geschnittenen Knorpelpräparats. Ergebnisse: Die Sprunggelenke der neugeborenen Fohlen zeigten eine homogene Verteilung der Knorpelelastizität über den gesamten Rollkamm. Eine Knorpeldickemessung war aufgrund der noch nicht abgeschlossenen enchondralen Ossifikation nicht möglich. Die Tali des Jährlings wiesen bereits eine deutliche Heterogenität der Knorpelelastizität und -dickeF auf. Die adulten Tiere zeigten mit einer hohen Signifikanz (p < 0,001) einen deutlichen Trend einer nach distal abnehmenden Knorpelelastizität und einer gegenläufigen Verteilung der Knorpeldicke. An den proximalen Messpunkten wurden Werte von 0,873–1,321 Newton (N) erreicht, an den distalsten Messpunkten nur noch 0,375–0,550 N. Für die Knorpeldicke ergaben sich proximal Werte von 0,49–0,78 mm und distal von 0,68–1,08 mm. Schlussfolgerung: Die verwendete Messsonde eignet sich zur Bestimmung der Knorpelelastizität beim Pferd. Die Knorpelelastizität und -dicke am equinen Talus weisen ein lokales und altersabhängiges Verteilungs muster auf. Klinische Relevanz: Bei der Detektion von frühen pathologischen Veränderungen der Knorpelmatrix muss die lokalisations- und altersspezifische Ausprägung der Knorpelelastizität berücksichtigt werden.

Summary

Objective: This article deals for the first time with reference values for cartilage stiffness and cartilage thickness at the talus of the horse. Material and methods: 24 horses of different age (two foals, one yearling, 21 adults) were examined post mortem. Cartilage stiffness was determined in vitro at 23 measuring points on the talus by an indenter (Artscan® 200) which can be used likewise intra vitam. The measuring probe was placed on the cartilage at a force of 2 Newton (N) in an angle of 20 degrees for about 2 seconds. Cartilage thickness was determined using a magnifying measuring glass on 18 measuring points on the sliced cartilage preparation. In the newborn foal, the determination of the cartilage thickness was not possible due to the not yet finished enchondral ossification. In the adult horses, three to four measuring points were compared with one another on hypothetical measuring lines on and at the flanks of the trochlear ridges. With linear regression slopes (trends) on the proximodistal measuring lines were calculated within each horse. By means of the single-sample t test the mean slope was compared with zero to its statistical relevance. As regards the foal and the yearling, a descriptive statistical analysis was performed. Results: The hocks of the newborn foals showed a homogeneous distribution of the cartilage stiffness over the entire talus. The tali of the yearling already presented a clear heterogeneity of cartilage stiffness and thickness. In the adult animals, cartilage stiffness decreased significantly from proximal to distal (p < 0.001). Cartilage thickness showed a contrary tendency and increased to distal. This trend was seen directly on the trochlear ridges as well as on the lateral flanks. Values from 0.873–1.321 Newton (N) were reached at the proximal measuring points, whereas the most distal ones reached only 0.375–0.550 N. Cartilage thickness here is antidromic to cartilage stiffness over the entire talus with proximal values from 0.49–0.78 mm and distal ones from 0.68–1.08 mm. Conclusions: The indenter system is useful to measure cartilage stiffness in the horse. Cartilage stiffness and thickness of the equine talus show a site-specific and age-related pattern. Clinical relevance: To detect early pathological changes in cartilage matrix intra vitam the specific distribution pattern of cartilage stiffness should be considered.

* Herrn Prof. Dr. R. Fritsch zum 80. Geburtstag gewidmet.


 
  • Literatur

  • 1 Bird JLE, Platt D, Wells T, May SA, Bayliss MT. Exercise-induced changes in proteoglycan metabolism of equine articular cartilage. Equine Vet J 2000; 32 (Suppl. 02) 161-163.
  • 2 Brama PA, Tekoppele JM, Bank RA, Karssenberg D, Barneveld A, van Weeren PR. Topographical mapping of biochemical properties of articular cartilage in the equine fetlock joint. Equine Vet J 2000; 32 (Suppl. 01) 19-26.
  • 3 Brama PA, Tekoppele JM, Bank RA, Barneveld A, van Weeren PR. Functional adaption of equine articular cartilage: the formation of regional biochemical characteristics up to age one year. Equine Vet J 2000; 32 (Suppl. 03) 217-221.
  • 4 Brama PA, Barneveld A, Karssenberg D, Kampen GP, van Weeren PR. The application of an indenter system to measure structural properties of articular cartilage in the horse. Suitability of the instrument and correlation with biochemical data. J Vet Med A Physiol Pathol Clin Med 2001; 48 (Suppl. 04) 213-221.
  • 5 Brama PA, TeKoppele JM, Bank RA, Barneveld A, van Weeren PR. Development of biochemical heterogeneity of articular cartilage: influences of age and exercise. Equine Vet J 2002; 34 (Suppl. 03) 265-269.
  • 6 Brommer H, Brama PA, Laasanen MS, Helminen HJ, van Weeren PR, Jurvelin JS. Functional adaption of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Equine Vet J 2005; 37 (Suppl. 02) 148-154.
  • 7 Brommer H, Laasanen MS, Brama PA, van Weeren PR, Helminen HJ, Jurvelin JS. In situ and ex vivo evaluation of an arthroscopic indentation instrument to estimate the health status of articular cartilage in the equine metacarpophalangeal joint. Vet Surg 2006; 35: 259-266.
  • 8 Firth EC. The response of bone, articular cartilage and tendon to exercise in the horse. J Anat 2006; 208 (Suppl. 04) 513-526.
  • 9 Hayes WC, Keer LM, Herrmann G, Mockros LF. A mathematical analysis for indentation tests of articular cartilage. J Biomech 1972; 5: 541-551.
  • 10 Korhonen RK, Wong M, Arokoski J, Lindgren R, Helminen HJ, Hunziker EB, Jurvelin JS. Importance of the superficial tissue layer for the indentation stiffness of articular cartilage. Med Eng Phys 2002; 24: 99-108.
  • 11 Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS. Comparison of equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 2002; 35: 903-909.
  • 12 Korhonen RK, Saarakkala S, Töyräs J, Laasanen MS, Kiviranta I, Jurvelin JS. Experimental and numerical validation for the novel configuration of an arthroscopic indentation instrument. Phys Med Biol 2003; 48: 1565-1576.
  • 13 Li P, Buschmann MD, Shirazi-Adl A. A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression. J Biomech 2000; 33: 1533-1541.
  • 14 Lyyra T, Jurvelin J, Pitkänen P, Väätäinen U, Kiviranta I. Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med Eng Phys 1995; 17 (Suppl. 05) 395-399.
  • 15 Lyyra T, Kiviranta I, Väätäinen U, Helminen HJ, Jurvelin JS. In vivo characterization of indentation stiffness of articular cartilage in the normal human knee. J Biomed Mater Res 1999; 48 (Suppl. 04) 482-487.
  • 16 Lyyra-Laitinen T, Niinimäki M, Töyräs J, Lindgren R, Kiviranta I, Jurvelin JS. Optimization of the arthroscopic indentation instrument for the measurement of thin cartilage stiffness. Phys Med Biol 1999; 44 (Suppl. 10) 2511-2524.
  • 17 Mak AF, Lai WM, Mow VC. Biphasic indentation of articular cartilage. 1. Theoretical analysis. J Biomech 1987; 20: 703-714.
  • 18 Mitchell N, Shepard N, Cruess RL. eds. The musculosceletal system. In: Embryology, Biochemistry and Physiology, Structure and Function, Chapter 10. New York: Churchill Livingston; 1982
  • 19 Mow VC, Lai WM. Mechanics of animal joints. Ann Rev Fluid Mech 1979; 11: 247-288.
  • 20 Mow VC, Kuei SC, Lai WM, Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 1980; 102 (Suppl. 01) 73-84.
  • 21 Murray RC, Birch HL, Lakhani K, Goodship AE. Biochemical composition of equine carpal cartilage is influenced by short-term exercise in a site-specific manner. Osteoarthritis Cartilage 2001; 9 (Suppl. 07) 625-632.
  • 22 Nugent GE, Law AW, Wong EG, Temple MM, Bae WC, Chen AC, Kawcak CE, Sah RL. Site- and exercise-related variation in structure and function of cartilage from equine distal metacarpal condyle. Osteoarthritis Cartilage 2004; 12 (Suppl. 10) 826-833.
  • 23 Sakamoto M, Li G, Hara T, Chao EYS. A new method for theoretical analysis of static indentation test. J Biomech 1996; 29 (Suppl. 05) 679-685.
  • 24 Skiöldebrand E, Heinegård D, Olofsson B, Rucklidge G, Ronéus N, Ekman S. Altered homeostasis of extracellular matrix proteins in joints of standardbred trotters during a long-term training program. J Vet Med Series A 2006; 53 (Suppl. 09) 445-449.
  • 25 Sun DD, Guo XE, Likhitpanichkul M, Lai WM, Mow VC. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression. J Biomech Eng 2004; 126 (Suppl. 01) 6-16.
  • 26 Swann AC, Hrsg. Seedhom BB. Hrsg Institution of Mechanical Engineers (Veranst.). Improved techniques for measuring the indentation and thickness of articular cartilage. 1989 Bd. 203
  • 27 van de Lest CH, Brama PA, van Weeren PR. The influence of exercise on the composition of developing equine joints. Biorheology 2002; 39: 183-191.
  • 28 van Weeren PR, Brama PA. Equine joint disease in the light of new developments in articular cartilage research. Pferdeheilk 2003; 19 (Suppl. 04) 336-344.
  • 29 Watanabe A, Boesch C, Siebenrock K, Obata T, Anderson SE. T2 mapping of hip articular cartilage in healthy volunteers at 3T: a study of topographical variation. J Magn Reson Imaging 2007; 26 (Suppl. 01) 165-171.
  • 30 Xia Y, Moody JB, Alhadlaq H, Burton-Wurster N, Lust G. Characteristics of topographical heterogeneity of articular cartilage over the joint surface of humeral head. Osteoarthritis Cartilage 2002; 10 (Suppl. 05) 370-380.