Tierarztl Prax Ausg G Grosstiere Nutztiere 2004; 32(04): 180-190
DOI: 10.1055/s-0038-1623557
Allgemeines
Schattauer GmbH

Zur Bewertung von Arzneimittelrückständen im Festmist von Veterinärkliniken

Eine LiteraturauswertungValuation of drug residues in solid manure from veterinarian complex hospitalsA literature study
F. Lutz
1   Aus dem Institut für Pharmakologie und Toxikologie (geschäftsführender Direktor: Prof. Dr. E. Petzinger), Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen
,
J. Alber
1   Aus dem Institut für Pharmakologie und Toxikologie (geschäftsführender Direktor: Prof. Dr. E. Petzinger), Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen
› Author Affiliations
Further Information

Publication History

Publication Date:
05 January 2018 (online)

Zusammenfassung

Gegenstand: Frischer Festmist von Großtieren in Kliniken enthält infolge therapeutischer Erfordernisse bei fast allen Patienten viele Arzneistoffe bzw. deren Metaboliten. Antibiotika und Antiparasitika erreichen millimolare Konzentrationen. Zugängliche Analysen zum Arzneistoffabbau im Festmist liegen nicht vor. Material und Methoden: Die Geschwindigkeit des Arzneistoffabbaus wird deshalb aus Übersichten zur Stabilität von Arzneistoffen gegenüber Licht, Luft, erhöhter Temperatur, Wasser und alkalischem pH sowie aus experimentellen Untersuchungen in Exkrement- bzw. Substanz-Ackererde-Gemischen, Gülle und Oberflächenwassersedimenten abgeschätzt. Dazu kommt eine punktuelle allgemeine Bewertung der Kompostierung des Festmists von Großtieren der Veterinärkliniken der Universität Gießen. Ergebnisse: Der Abbau der Arzneistoffe wird durch die Kombination biologischer und physikochemischer Faktoren beschleunigt. Daraus ergibt sich, dass die Zusammensetzung des Festmists, optimierte Lagerungsbedingungen und Umschichtungen wichtige Faktoren für dessen Reifung sind. Schlussfolgerung und klinische Relevanz: Aus der Abschätzung folgt, dass eine Verwertung kompostierten Festmists auf landwirtschaftlich genutzten Böden erst nach einjähriger Kompostierung erfolgen soll. Der therapeutische Einsatz von Arzneimitteln verschiedener Klassen ist auf essenzielle Situationen zu begrenzen, derjenige der Aminoglykoside Dihydrostreptomycin, Gentamicin, Kanamycin und Neomycin wegen physikochemischer Stabilität, der Tetrazykline wegen Adsorption an kationische Strukturen der Erde.

Summary

Objective: The fresh solid manure from veterinary medical teaching hospitals contains, as a result of therapeutical treatments of the patients many drugs and their residues which are excreted by faeces and urine. Antibiotical and antiparasitical compounds reach millimolar concentrations. Analyses of their decomposition within the solid manure are not available. Material and methods: The calculation of drug decomposition is presented following their stability against degradation by light, air, hydrolysis, heat and alkaline pH as listed in reviews. Furthermore, experimental data from decomposition in excret-soil and substance-soil mixtures, liquid manure and surface water sediments were used. Besides the punctual general evaluation of solid manure of large animals of the clinics of Veterinary Faculty of the University of Giessen, where no animal urine was mixed with the manure. Results: The drug decomposition is increased on the basis of combination of destructive conditions. Following, the composition of solid manure, optimated conditions of storage and regrouping are important for destruction of therapeutics. Conclusions and clinical relevance: The manure should be deposited for one year before application to fields. The use of several groups of drugs should be restricted to essential situations: The aminoglycosides dihydrostreptomycin, gentamicin, kanamycin and neomycin have high chemical and physical stability. Tetracyclines are adsorbed to cationic structures of soil.

 
  • Literatur

  • 1 Berger K, Petersen B, Büning-Pfaue H. Persistenz von Gülle-Arzneistoffen in der Nahrungskette. Arch Lebensmittelhyg 1986; 37: 99-102.
  • 2 Bull DL, Ivie GW, MacConnell JG, Gruber VF, Ku CC, Arison BH, Stevenson JM, VandenHeuvel WJA. Fate of avermectin B1a in soil and plants. J Agric Food Chem 1984; 32: 94-102.
  • 3 Calleja MC, Persoone G, Geladi P. The predictive potential of a battery of ecotoxicological tests for human acute toxicity, as evaluated with the first 50 MEIC chemicals. ATLA 1993; 21: 330-49.
  • 4 DIN 58940. Empfindlichkeitsprüfung von Krankheitserregern gegen Chemotherapeutika. DIN Taschenbuch. Medizinische Mikrobiologie und Immunologie.. Berlin, Köln: Beuth; 1994
  • 5 Doherty WM, Stewart NP, Cobb RM, Keiran PJ. In vitro-comparison of the larvicidal activity of moxidectin and abamectin against Onthophagus gazella (F.) (Coleoptera: Scarabaeidae) and Haematobia irritans exigua De Meijere (Díptera: Muscidae). J Aust Entomol Soc 1994; 33: 71-4.
  • 6 EMEA. Maximal Residue Limits (MRL), Summary Reports.. London: 19952003 www.emea.eu.int/index/indexv1.htm
  • 7 EMEA. Environmental Impact Assessment (EIAs) for Veterinary Medicinal Products (VMPs) – Phase I.. London: 2000. www.emea.eu.int/pdfs/vet/vich/059298.en/dpf
  • 8 Ervik A, Thorsen B, Eriksen V, Lunestad BT, Samuelsen OB. Impact of administrating antibacterial agents on wild fish and blue mussels Mytilus edulis in th vicinity of fish farms. Dis Aquat Org 1994; 18: 45-51.
  • 9 Floate KD, Spooner RW, Colwell DD. Larvicidal activity of endectoides against pest flies in the dung of treated cattle. Med Vet Entomol 2001; 15: 117-20.
  • 10 Frey H-H, Löscher W. Lehrbuch der Pharmakologie und Toxikologie für die Veterinärmedizin. 2. Aufl. Stuttgart: Enke; 2002
  • 11 Gavalchin J, Katz SE. The persistence of fecal-borne antibiotics in soil. J AOAC Internat 1994; 77: 481-5.
  • 12 Gilbertson TJ, Hornish RE, Jaglan PS, Koshy KT, Nappier JL, Stahl GL, Cazers AR, Nappier JM, Kubicek MF, Hoffman GA, Hamlow PJ. Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition. J Agric Food Chem 1990; 38: 890-4.
  • 13 Gokbulut C, Nolan AM, McKellar QA. Pharmakokinetic disposition and faecal excretion of pyrantel embonate following oral administration in horses. J Vet Pharmacol Ther 2001; 24: 77-9.
  • 14 Gover J, Strong L. Effects of ingestion of dung containing ivermectin on aspects of behaviour in the fly Neomyia cornicina . Physiol Entomol 1996; 21: 51-8.
  • 15 Grimm H. Wie stabil sind Arzneimittel?. Dt Apoth Z 1980; 120: 1193-6.
  • 16 Guerino F, Mangels GD. The effects of moxidectin on the insects of cattle dung in Southwest England. Moxidectin Symposium 13./14. 2. 99. Reinbek/Hamburg: Fort Dodge; 1999: 15-23.
  • 17 Halley BA, Jacob TA, Lu AYH. The environmental impact of the use of ivermectin. Environmental effects and fate. Chemosphere 1989; 18: 1543-63.
  • 18 Halling-Sørensen B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 2000; 40: 731-9.
  • 19 Halling-Sørensen B, Nielsen SN, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE. Occurence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 1998; 36: 357-93.
  • 20 Hamscher G, Sczesny S, Höper H, Nau H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 2002; 74: 1509-18.
  • 21 Hartke K, Hartke H, Mutschler E, Rücker G, Wichtl M, Bracher F, Stahl-Biskup E. Kommentar zum Europäischen Arzneibuch.. 15. Lief. Stuttgart: WVG; 2002
  • 22 Haus F, German J, Junter G-A. Primary biodegradability of mineral base oils in relation to their chemical and physical characteristics. Chemosphere 2001; 45: 983-90.
  • 23 Holten Lützhøft HC, Halling-Sørensen B, Jørgensen SE. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 1999; 36: 1-6.
  • 24 Howard PH, Boethling RS, Jarvis WF, Meylan WM, Michalenko EM. Handbook of Environmental Degradation Rates.. Chelsea: Lewis; 1991
  • 25 Ingerslev F, Toräng L, Loke M-L, Halling-Sørensen B, Nyholm N. Primary biodegradation of veterinary antibiotics in aerobic and anaerobic surface water simulation systems. Chemosphere 2001; 44: 865-72.
  • 26 Kroker R. Aspekte zur Ausscheidung antimikrobiell wirksamer Substanzen nach der chemotherapeutischen Behandlung von Nutztieren. Wissensch Umwelt 1983; 4: 305-8.
  • 27 Langhammer J-P. Untersuchungen zum Verbleib antimikrobiell wirksamer Arzneistoffe als Rückstände in Gülle und im landwirtschaftlichen Umfeld.. Bonn: Diss rer nat; 1989
  • 28 Lumaret JP, Galante E, Lumbreras C, Mena J, Bertrand M, Bernal JL, Cooper JF, Kadiri N, Crowe D. Field effects of ivermectin residues on dung beetles. J Appl Ecol 1993; 30: 428-36.
  • 29 Madsen M, Overgaard Nielsen B, Holter P, Pedersen OC, Brachner Jespersen J, Vagn Jensen K-M, Nansen P, Granvold J. Treating cattle with ivermectin: effects on the fauna and decomposition of dung pats. J Appl Ecol 1990; 27: 1-15.
  • 30 McKellar QA, Scott EW, Baxter P, Anderson LA, Bairden K. Pharmacodynamics, pharmacokinetics and faecal persistence of morantel in cattle and goats. J Vet Pharmacol Therap 1993; 16: 87-92.
  • 31 Metsärinne S, Tuhkanen T, Aksela R. Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range. Chemosphere 2001; 45: 949-55.
  • 32 Miller JA, Oehler DD, Scholl PJ. Moxidectin: pharmacokinetics and activity against horn flies (Diptera: Muscidae) and trichostrongyle nematode egg production. Vet Parasitol 1994; 53: 133-43.
  • 33 Mollica JA, Ahura S, Cohen J. Stability of pharmaceuticals. J Pharmac Sci 1978; 67: 443-65.
  • 34 Montfors MHMM, Kalf DF, van Vlaardingen PLA, Linders JBHJ. The exposure assessment for veterinary medicinal products. Sci Tot Environ 1999; 225: 119-33.
  • 35 Mrozik H, Eskola P, Reynolds GF, Arison BH, Smith GM, Fisher MH. Photoisomers of avermectins. J Org Chem 1988; 53: 1820-3.
  • 36 Mutschler E, Geisslinger G, Kroemer HK, Schäfer-Korting M. Arzneimittelwirkungen.. 8. Aufl. Stuttgart: WVG; 2001
  • 37 Parfitt K. Martindale: The complete drug reference.. 32. Aufl. London: Pharmaceut Press; 1999
  • 38 Rabølle M, Spliid NH. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere 2000; 40: 715-22.
  • 39 Sommer C, Steffansen B. Changes with time after treatment in the concentrations of ivermectin in fresh cow dung and in cow pats aged in the field. Vet Parasitol 1993; 48: 67-73.
  • 40 Spaepen KRI, van Leemput LJJ, Wislocki PG, Verschueren C. A uniform procedure to estimate the predicted environmental concentration of the residues of veterinary medicines in soil. Envir Toxicol Chem 1997; 16: 1977-82.
  • 41 Steel JW. Pharmacokinetics and metabolism of avermectins in live stock. Vet Parasitol 1993; 48: 45-57.
  • 42 Thoma K. Arzneimittelstabilität.. Frankfurt/Main, Selbstdruck: 1978
  • 43 Walter AM, Heilmeyer L, Plempel M, Otten H. Antibiotika-Fibel. 3. Aufl. Stuttgart: Thieme; 1969
  • 44 Wardhaugh KG, Mahon RJ, Axelsen A, Rowland MW, Wanjura W. Effects of ivermectin residues in sheep dung on the development and survival of the bushfly, Musca vetustissima Walker and a scarabaeine dung beetle, Euoniticellus fulvus Goeze. Vet Parasitol 1993; 48: 139-57.
  • 45 Wardhaugh KG, Longstaff BC, Morton R. A comparison of the development and survival of the dung beetle, Ontophagus taurus (Schreb.) when fed on the faeces of cattle treated with pour-on formulations of eprinomectin or moxidectin. Vet Parasitol 2001; 99: 155-68.
  • 46 Wornick RC. Antibiotic stability – a review. Proc 15th Ann Res Conf Agricult Res & Dev Dept Chas.. New York: Pfizer & Co; 1967: 54-90.