Tierarztl Prax Ausg G Grosstiere Nutztiere 2014; 42(05): 261-270
DOI: 10.1055/s-0038-1623235
Originalartikel
Schattauer GmbH

Potenzielle Bedeutung des Spurenelements Selen für die Entstehung der Gebärparese beim Rind

Potential involvement of selenium in the occurrence of milk fever in cattle
M. Heilig
1   Medizinische Tierklinik, Veterinärmedizinische Fakultät, Universität Leipzig
,
D. Bäuml
1   Medizinische Tierklinik, Veterinärmedizinische Fakultät, Universität Leipzig
,
M. Fürll
1   Medizinische Tierklinik, Veterinärmedizinische Fakultät, Universität Leipzig
› Author Affiliations
Further Information

Publication History

Eingegangen: 05 August 2013

Akzeptiert nach Revision: 27 May 2014

Publication Date:
05 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: Häufiges Auftreten der Gebärparese (GP) sowie zum Teil unbefriedigende Behandlungserfolge zwingen zur Frage, inwieweit neben den bekannten Ursachen weitere Faktoren Inzidenz und Therapieerfolg bei GP beeinflussen. Spurenelemente, wie Selen (Se), sind in den Knochenstoffwechsel involviert, doch gibt es wenige Kenntnisse über fördernde Einflüsse von Se bei der Entstehung der GP. Ziel der Studie war deshalb, die Konzentration von Se und statistische Beziehungen zu unter Se-Einflüssen stehenden Parametern bei festliegenden Kühen zu analysieren. Material und Methoden: Festliegende und klinisch gesunde Fleckviehkühe wurden in fünf Gruppen eingeteilt: a) Kontrollgruppe (KG, n = 21) b) GP-Kühe gesamt (n = 174), c) GP-Kühe ohne Zusatzkrankheiten (n = 145), d) GP-Kühe mit Mastitis (n = 10) sowie e) GP-Kühe mit Retentio secundinarum oder puerperaler Metritis (n = 19). Die Blutserumanalysen umfassten Selen (Se), Kalzium (Ca), anorganisches Phosphat (Pi), Tumornekrosefaktor α (TNFα), Haptoglobin (Hp), Antioxidanzien (Trolox Equivalent Antioxidative Capacity) sowie weitere metabolische Parameter. Ergebnisse: Die Serumkonzentrationen von Se, Ca, Pi und TEAC waren in den Gruppen b) bis e) signifikant niedriger bzw. Hp höher als in der KG (p 0,05). Se korrelierte in der KG positiv mit Pi, in den Gruppen b) und c) mit Ca, Pi, K, Mg und in Gruppe c) mit Hp (p 0,05). Die Ca- und Pi-Konzentrationen lagen in Gruppe c) signifikant niedriger als in Gruppe d) (p 0,05). Die TNFα-Konzentration zeigte sich in den Gruppen b) und c) gegenüber a) erhöht und korrelierte in der Gruppe e) mit Se (p 0,05). Die Aktivität der alkalischen Phosphatase war in den Gruppen b) und e) niedriger als in der KG und korrelierte in der Gruppe a) mit Se (p 0,05). Schlussfolgerung: In Übereinstimmung mit Literaturangaben unterstützen die Resultate die Hypothese, dass Se unmittelbar in den Knochenstoffwechsel eingreift und damit in der Pathogenese der GP involviert sein könnte. Se wirkt über Zytokine auf die Ca-Mobilisierbarkeit aus dem Knochen. Die gemessenen Konzentrationen von Hp und TEAC unterstützen diese Interpretation. Die Kontrolle des Se-Status und die Se-Supplementation der Kühe sollten bei der Prävention und erweiterten Therapie der GP berücksichtigt werden.

Summary

Objective: Frequent occurrence of parturient paresis (milk fever [MF]) and a partly unsatisfactory treatment success raises the question as to whether in addition to the known causes, other factors influence the incidence and success of MF treatment. Trace elements, including selenium (Se), are involved in bone metabolism, however, there is little knowledge regarding the influence of Se on MF development. The aim of this study was to analyse the concentrations of Se and the statistical relationships to parameters associated with Se influence in downer cows. Material and methods: A total of 195 Simmental cows, downer cows and clinically healthy control animals were divided into five groups: a) control group (CG, n = 21), b) all cows with MF (n = 174), c) MF cows without additional diseases (n = 145), d) cows with MF and mastitis (n = 10) and e) cows with MF and retained placenta or endometritis (n = 19). Se, calcium (Ca), inorganic phosphate (Pi), tumour necrosis factor α (TNFα), haptoglobin (Hp), antioxidants (Trolox Equivalent Antioxidative Capacity: TEAC) and further metabolic parameters were analysed in the blood serum. Results: The serum concentrations of Se, Ca, Pi and TEAC were lower in groups b) to e), whereas Hp was higher than in the CG (p 0.05). Se was positively correlated with Pi in the CG, in groups b) and c) with Ca, Pi, K and Mg and in group c) with Hp (p 0.05). Both Ca and Pi were significantly lower in group c) compared to group d) (p 0.05). TNFα was increased in groups b) and c) compared to group a) and correlated with Se in group e) (p 0.05). Alkaline phosphatase activity in groups b) and e) was lower than in the CG and correlated with Se in the CG and group b) (p 0.05). Conclusion: These results, in agreement with the literature data, support the hypothesis that Se could be directly involved in bone metabolism and therefore in the pathogenesis of MF. Se acts via cytokines on Ca mobilization from bone. The concentrations of Hp and TEAC support this interpretation. Therefore, control of the Se status and Se supplementation of cows should be included in the prevention and advanced therapy of MF.

 
  • Literatur

  • 1 Ametaj BN, Zebeli Q, Iqbal S. Nutrition, microbiota and endotoxin-related diseases in dairy cows. R Bras Zootec 2010; 39: 433-444.
  • 2 Bäuml D. Vorkommen und Bedeutung von Normokalzämien bei post partum festliegenden Kühen. Diss med vet Universität Leipzig; 2013
  • 3 Bikle D, Wang Y. Insulin-like growth factor-I and bone. IBMS BoneKey 2011; 8: 328-341 http://www.nature.com/bonekey/knowledgeenvironment/2011/1107/bonekey20110521/images_article/bonekey20110521-f3.jpg
  • 4 Braun U, Blatter M, Büchi R, Hässig M. Treatment of cows with milk fever using intravenous and oral calcium and phosphorus. Schweiz Arch Tierheilkd 2012; 154 (09) 381-388.
  • 5 Chen H, Xu H, Dong J, Li J, Ghishan FK. Tumor necrosis factor-alpha impairs intestinal phosphate absorption in colitis. Am J Physiol Gastrointest Liver Physiol 2009; 296 (04) G775-781.
  • 6 Compston JE. Sex Steroids and Bone. Physiol Rev 2001; 81: 419447.
  • 7 Eckermann K. Stoffwechseluntersuchungen in der Trockenstehperiode bei gesunden und post partum festliegenden Kühen. Diss med vet Universität Leipzig; 2007
  • 8 Enjalbert F, Lebreton P, Salat O. Effects of copper, zinc and selenium status on performance and health in commercial dairy and beef herds: Retrospective study. J Anim Physiol Anim Nutr (Berl) 2006; 90 (11–12): 459-466.
  • 9 Fürll M. Spezielle Untersuchungen beim Wiederkäuer. In: Klinische Labordiagnostik in der Tiermedizin. 7. Aufl.. Moritz A. Hrsg. Stuttgart: Schattauer; 2013: 726-777.
  • 10 Frei B. Molecular and biological mechanisms of antioxidant action. FASEB Journal 1999; 13: 963-964.
  • 11 Goff JP. Pathophysiology of calcium and phosphorus disorders. Vet Clin North Am Food Anim Pract 2000; 16 (02) 319-337 vii.
  • 12 Grummer RR. Impact of changes in organic nutrient metabolism on feeding the transition cow. J Anim Sci 1995; 73: 2820-2833.
  • 13 Gunter SA, Beck PA, Hallford DM. Effects of supplementary selenium source on the blood parameters in beef cows and their nursing calves. Biol Trace Elem Res 2013; 152 (02) 204-211.
  • 14 Guo M, Lv T, Liu F, Yan H, Wei T, Cai H, Tian W, Zhang N, Wang Z, Xie G. Dietary selenium influences calcium release and activation of MLCK in uterine smooth muscle of rats. Biol Trace Elem Res 2013; 154 (01) 127-133.
  • 15 Hartfiel W, Bahners N. Selenium deficiency in the Federal Republic of Germany. Biol Trace Elem Res 1988; 15: 1-12.
  • 16 Haßler A. Spurenelement- und antioxidativer Status bei Kühen mit Dislocatio abomasi und anderen Krankheiten. Diss med vet Universität Leipzig; 2006
  • 17 Humann-Ziehank E, Renko K, Mueller AS, Roehrig P, Wolfsen J, Ganter M. Comparing functional metabolic effects of marginal and sufficient selenium supply in sheep. J Trace Elem Med Biol. 2013 14. pii: S0946–672X(13)00046–1 doi: DOI: 10.1016/j.jtemb.2013.03.003 [Epub ahead of print].
  • 18 Jakob F, Becker K, Paar E, Ebert-Duemig R, Schütze N. Expression and regulation of thioredoxin reductases and other selenoproteins in bone. Methods Enzymol 2002; 347: 168-179.
  • 19 Köhrle J, Jakob F, Contempré B, Dumont JE. Selenium, the thyroid, and the endocrine system. Endocr Rev 2005; 26 (07) 944-984.
  • 20 Kommisrud E, Østerås O, Vatn T. Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet Scand 2005; 46: 229-240.
  • 21 Maggio M, Ceda GP, Lauretani F, Bandinelli S, Dall’Aglio E, Guralnik JM, Paolisso G, Semba RD, Nouvenne A, Borghi L, Ceresini G, Ablondi F, Benatti M, Ferrucci L. Association of plasma selenium concentrations with total IGF-1 among older community-dwelling adults: the InCHIANTI study. Clin Nutr 2010; 29 (05) 674-677.
  • 22 Meglia GE, Holtenius K, Petersson L, Öhagen P, Persson Waller K. Prediction of vitamin A, vitamin E, selenium and zinc status of periparturient dairy cows using blood sampling during the mid dry period. Acta Vet Scand 2004; 45 (02) 119-128.
  • 23 Miller J, Brzezinska-Slebodzinska E, Madsen F. Oxidative stress, antioxidants, and animal function. J Dairy Sci 1993; 76: 2812-2823.
  • 24 Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Letters 1996; 384: 240-242.
  • 25 Moreno-Reyes R, Egrise D, Nève J, Pasteels JL, Schoutens A. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res 2001; 16 (08) 1556-1563.
  • 26 Nazıroğlu M, Yıldız K, Tamtürk B, Erturan İ, Flores-Arce M. Selenium and psoriasis. Biol Trace Elem Res 2012; 150 (1–3): 3-9.
  • 27 Onmaz AC, Aytekin I, Aypak SU, Gunes V, Kucuk O, Ozturk AS. Trace elements and biochemical and haematological parameters in cows with downer syndrome. Bull Vet Inst Pulawy 2011; 55: 525-528.
  • 28 Ozdemir S, Ayaz M, Can B, Turan B. Effect of selenite treatment on ultrastructural changes in experimental diabetic rat bones. Biol Trace Elem Res 2005; 107 (02) 167-179.
  • 29 Petersen HH, Nielsen JP, Heegaard PM. Application of acute phase protein measurements in veterinary clinical chemistry. Vet Res 2004; 35 (02) 163-187.
  • 30 Røntved CM, Andersen JB, Dernfalk J, Ingvartsen KL. Effects of diet energy density and milking frequency in early lactation on tumor necrosis factor-alpha responsiveness in dairy cows. Vet Immunol Immunopathol 2005; 104 (3–4): 171-181.
  • 31 Salman S, Khol-Parisini A, Schafft H, Lahrssen-Wiederholt M, Hulan HW, Dinse D, Zentek J. The role of dietary selenium in bovine mammary gland health and immune function. Anim Health Res Rev 2009; 10 (01) 21-34.
  • 32 Sandukji A, Al-Sawaf H, Mohamadin A, Alrashidi Y, Sheweita SA. Oxidative stress and bone markers in plasma of patients with long-bone fixative surgery: role of antioxidants. Hum Exp Toxicol 2011; 30 (06) 435-442.
  • 33 Sattler T, Fürll M. Creatine kinase and aspartate aminotransferase in cows as indicators for endometritis. J Vet Med 2004; A 51: 132-137.
  • 34 Schweizer U, Dehina N, Schomburg L. Disorders of selenium metabolism and selenoprotein function. Curr Opin Pediatr 2011; 23 (04) 429-435.
  • 35 Smith EA, Knowlton KF, Petersson-Wolfe CS, Mullarky IK, Winston DR. The relationship between proinflammatory cytokines levels and onset of milk fever in dairy cows. J Anim Sci 2008; V 86, E-Suppl. 2/J. Dairy Sci V 91, E-Suppl. 1: 234.
  • 36 Stephensen CB. Burden of infection on growth failure. J Nutr 1999; 129 (2S Suppl): 534S-538S.
  • 37 Sun JY, Wang JF, Zi NT, Jing MY, Weng XY. Effects of zinc supplementation and deficiency on bone metabolism and related gene expression in rat. Biol Trace Elem Res 2011; 143 (01) 394-402.
  • 38 Surai PF. Selenium in nutrition and health. Nottigham University Press; 2006. ISBN 10: 1–904761–16-X.
  • 39 Tanguy S, Rakotovao A, Jouan MG, Ghezzi C, de Leiris J, Boucher F. Dietary selenium intake influences Cx43 dephosphorylation, TNF- expression and cardiac remodeling after reperfused infarction. Mol Nutr Food Res 2011; 55 (04) 522-529.
  • 40 Turan B, Can B, Delilbasi E. Selenium combined with vitamin E and vitamin C restores structural alterations of bones in heparin-induced osteoporosis. Clin Rheumatol 2003; 22 (06) 432-436.
  • 41 Ueland T. GH/IGF-I and bone resorption in vivo and in vitro. Eur J Endocrinol 2005; 152: 327-332.
  • 42 Van Saun RJ. Indicators of dairy cow transition risks: metabolic profiling revisited. Proc 26th World Buiatric Congress 2010. 2010 Nov 14–18. Santiago, Chile: 65-77.
  • 43 Wichtel JJ, Keefe GP, Van Leeuwen JA, Spangler E, McNiven MA, Ogilvie TH. The selenium status of dairy herds in Prince Edward Island. Can Vet J 2004; 45 (02) 24-32.
  • 44 Wilde D. Influence of macro and micro minerals in the peri-parturient period on fertility in dairy cattle. Anim Reprod Sci 2006; 96 (3–4): 240-249.
  • 45 Yao YF, Pei FX, Li XB, Yang J, Shen B, Zhou ZK, Li L, Kang PD. Preventive effects of supplemental selenium and selenium plus iodine on bone and cartilage development in rats fed with diet from kashin-beck disease endemic area. Biol Trace Elem Res 2012; 146 (02) 199-206.
  • 46 Yaccoby S. The role of the proteasome in bone formation and osteoclastogenesis. IBMS BoneKEy 2010; 7: 147-155 http://www.nature.com/bone key/knowledgeenvironment/2010/1004/bonekey20100439/images_article/bonekey20100439-f1.jpg
  • 47 Zhang ZW, Wang QH, Zhang JL, Li S, Wang XL, Xu SW. Effects of oxidative stress on immunosuppression induced by selenium deficiency in chickens. Biol Trace Elem Res 2012; 149 (03) 352-361.