Tierarztl Prax Ausg G Grosstiere Nutztiere 2014; 42(04): 199-208
DOI: 10.1055/s-0038-1623226
Originalartikel
Schattauer GmbH

Bedeutung der Spurenelemente Zink und Eisen bei der Gebärparese des Rindes

The relevance of the trace elements zinc and iron in the milk fever disease of cattle
M. Heilig
1   Medizinische Tierklinik, Veterinärmedizinische Fakultät, Universität Leipzig
,
D. Bäuml
1   Medizinische Tierklinik, Veterinärmedizinische Fakultät, Universität Leipzig
,
M. Fürll
1   Medizinische Tierklinik, Veterinärmedizinische Fakultät, Universität Leipzig
› Author Affiliations
Further Information

Publication History

Eingegangen: 10 December 2013

Akzeptiert nach Revision: 24 January 2014

Publication Date:
05 January 2018 (online)

Zusammenfassung

Ziel der Studie war, die Zink(Zn)- und Eisen(Fe)-Konzentrationen sowie Beziehungen zu Stoffwechselparametern bei festliegenden Kühen zu analysieren. Material und Methoden: Festliegende und klinisch gesunde Fleckviehkühe wurden in fünf Gruppen eingeteilt: a) Kontrollgruppe (KG, n = 21), b) Gebärparese(GP)-Kühe gesamt (n = 174), c) GP-Kühe ohne Zusatzkrankheiten (n = 145), d) GP-Kühe mit Mastitis (n = 10), e) GP-Kühe mit Retentio secundinarum oder postpartaler Endometritis (n = 19). Die Blutserumanalyse umfasste folgende Parameter: Selen (Se), Zn, Fe, Mangan (Mn), Kupfer (Cu), Kalzium (Ca), anorganisches Phosphat (Pi), Magnesium (Mg), Kalium (K), Tumornekrosefaktor α (TNFα), Haptoglobin (Hp), Antioxidanzien (Trolox Equivalent Antioxidative Capacity, TEAC), Protein, Albumin, freie Fettsäuren (FFS), Beta-Hydroxybutyrat (BHB), Bilirubin, Harnstoff, Kreatinin, Glukose, Cholesterol, Gamma-Glutamyltransferase (GGT) und alkalische Phosphatase (AP). Ergebnisse: Die Konzentrationen von Zn, Fe, Ca, Pi und TEAC waren bei allen festliegenden Kühen niedriger, die von Hp höher als in der KG (p 0,05). In Gruppe c) lagen Ca- und Pi-Konzentration niedriger als in den Gruppen d) und e) (p 0,05). In Gruppe e) wurde eine signifikant geringere Zn-Konzentration bestimmt als in Gruppe c) (p 0,05). Zn korrelierte negativ mit K (KG), positiv mit TEAC, Cu, Mn und Fe (Gruppe b und c) und Mn (Gruppe e) (p 0,05). Fe korrelierte gesichert positiv mit Ca (Gruppe c), mit Pi (Gruppe c), mit K (Gruppe b und c), mit Mg (Gruppen b–d) sowie mit Zn, Cu und Se (Gruppe b und c) (p 0,05). TNFα war in den Gruppen b) und c) erhöht und korrelierte negativ mit Fe (p 0,05). Die Aktivität der AP war in den Gruppen b) und e) niedriger als in der KG (p 0,05). Schlussfolgerung: Die Resultate und Literaturberichte befürworten die Hypothese, dass Zn und Fe unmittelbar den Knochenstoffwechsel beeinflussen und in die Pathogenese der GP involviert sein können. Die Hp- und TEAC-Konzentrationen unterstützen diese Interpretation. Die Kontrolle des Zn- und des Fe-Status der Kühe und die Supplementation von Zn sollten in die Prävention und erweiterte Therapie der GP eingeschlossen werden.

Summary

Objective: The aim of this study was to analyse the concentrations of Zn and Fe as well as their relationships to metabolic parameters in milk fever cows. Material and methods: A total of 195 Simmental cows, downer cows and clinically healthy control animals were divided into five groups: a) control group (CG, n = 21), b) all cows with milk fever (MF) (n = 174), c) MF cows without additional diseases (n = 145), d) cows with MF and mastitis (n = 10) and e) cows with retained placenta or endometritis (n = 19). Selenium (Se), zinc (Zn), iron (Fe), calcium (Ca), inorganic phosphorus (Pi), tumour necrosis factor α (TNFα), haptoglobin (Hp), antioxidants (Trolox Equivalent Antioxidative Capacity: TEAC), non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), bilirubin, urea, creatinine, glucose, cholesterol, gamma-glutamyl transferase (GGT) and alkaline phosphatase (AP) were analysed in the blood serum. Results: The concentrations of Zn, Fe, Ca, Pi and TEAC were lower in groups b) to e) whereas Hp was higher than in the CG (p 0.05). In group c), lower Ca and Pi concentrations were found when compared to groups d) and e) (p 0.05). In group e), Zn concentrations were significantly lower than in group c) (p 0.05). Zn was negatively correlated with K (CG) and positively correlated with TEAC, Cu, Mn and Fe (groups b and c) and with Mn (group e) (p 0.05). Fe was positively correlated with Ca (group c), Pi (group c), K (groups b and c) and Mg (groups b–d) as well as with Zn, Cu and Se (groups b and c) (p 0.05). In groups b) and c), TNFα was increased and negatively correlated with Fe (p 0.05). AP activity in groups b) and e) was lower than in the CG (p 0.05). Conclusion: These results and literature data support the hypothesis that Zn and Fe could be engaged in bone metabolism and be involved in the pathogenesis of MF. The concentrations of Hp and TEAC support this interpretation. Control of the Zn and Fe status of cows and Zn supplementation should be included in the prevention and advanced therapy of MF.

 
  • Literatur

  • 1 Aït-Aïssa S, Ausseil O, Palluel O, Vindimian E, Garnier-Laplace J, Porcher JM. Biomarker responses in juvenile rainbow trout (Oncorhynchus mykiss) after single and combined exposure to low doses of cadmium, zinc, PCB77 and 17beta-oestradiol. Biomarkers 2003; 8 (06) 491-508.
  • 2 Alcantara EH, Lomeda RA, Feldmann J, Nixon GF, Beattie JH, Kwun IS. Zinc deprivation inhibits extracellular matrix calcification through decreased synthesis of matrix proteins in osteoblasts. Mol Nutr Food Res 2011; 55 (10) 1552-1560.
  • 3 Ametaj BN, Zebeli Q, Iqbal S. Nutrition, microbiota and endotoxin-related diseases in dairy cows. R Bras Zootec 2010; 39: 433-444.
  • 4 Andrieu S. Is there a role for organic trace element supplements in transition cow health?. Vet J 2008; 176 (01) 77-83.
  • 5 Anke M, Risch M. Haaranalyse und Spurenelemente. Jena: Fischer; 1979
  • 6 Bäuml D. Vorkommen und Bedeutung von Normokalzämien bei post partum festliegenden Kühen. Diss med vet Universität Leipzig; 2013
  • 7 Bikle D, Wang Y. Insulin-like growth factor-I and bone. IBMS BoneKey 2011; 8: 328-341 http://www.nature.com/bonekey/knowledgeenviron ment/2011/1107/bonekey20110521/images_article/bonekey20110521-f3.jpg
  • 8 Bostedt H. Blutserumuntersuchungen bei festliegenden Rindern. Berl Münch Tierärztl Wschr 1973; 86: 344-349 387–392.
  • 9 Bostedt H, Wagenseil F, Garhammer M. Untersuchungen über den Eisen- und Kufpergehalt im Blutserum sowie über das rote Blutbild des Rindes während der Gravidität und in der Zeit der Geburt. Zuchthyg 1974; 9: 49-57.
  • 10 Carlson D, Poulsen HD, Vestergaard M. Additional dietary zinc for weaning piglets is associated with elevated concentrations of serum IGF-I. J Anim Physiol Anim Nutr 2004; 88 (9–10): 332-339.
  • 11 Ceppi A, Blum JW. Effects of growth hormone on growth performance, haematology, metabolites and hormones in iron-deficient veal calves. Zentralbl Veterinarmed A 1994; 41 (06) 443-458.
  • 12 Chen H, Xu H, Dong J, Li J, Ghishan FK. Tumor necrosis factor-alpha impairs intestinal phosphate absorption in colitis. Am J Physiol Gastrointest Liver Physiol 2009; 296 (04) G775-781.
  • 13 Díaz-Castro J, Ramirez López-Frías M, Campos MS, López-Frías M, Alférez MJ, Nestares T, Ortega E, López-Aliaga I. Goat milk during iron repletion improves bone turnover impaired by severe iron deficiency. J Dairy Sci 2011; 94 (06) 2752-2761.
  • 14 Eckermann K. Stoffwechseluntersuchungen in der Trockenstehperiode bei gesunden und post partum festliegenden Kühen. Diss med vet Universität Leipzig; 2007;
  • 15 Feitosa MC, Lima VB, Neto JM, Marreiro Ddo N. Plasma concentration of IL-6 and TNF- and its relationship with zincemia in obese women. Rev Assoc Med Bras 2013; 59 (05) 429-434.
  • 16 Frei B. Molecular and biological mechanisms of antioxidant action. FASEB Journal 1999; 13: 963-964.
  • 17 Fürll M. Spezielle Untersuchungen beim Wiederkäuer. Klinische Labordiagnostik in der Tiermedizin. 7. Aufl.. Moritz A. Hrsg. Stuttgart: Schattauer; 2013: 726-777.
  • 18 Fürll M, Sattler T, Anke M. Sekundärer Manganmangel als Bestandsproblem bei Rindern – Ein Fallbericht. Tierärztl Prax 2004; 32 (G): 126-132.
  • 19 Goff JP, Stabel JR. Decreased plasma retinol, alpha-tocopherol, and zinc concentration during the periparturient period: effect of milk fever. J Dairy Sci 1990; 73 (11) 3195-3199.
  • 20 Graham TW. Trace element deficiencies in cattle. Vet Clin North Am Food Anim Pract 1991; 7: 153-215.
  • 21 Gutowska I, Machoy Z, Machoy-Mokrzyńska A, Machaliński B. The role of iron in metal-metal interactions in hard tissues of roe deer (Capreolus capreolus L.). Ann Acad Med Stetin 2009; 55 (02) 16-21.
  • 22 Hallberg L, Brune M, Erlandsson M, Sandberg AS, Rossander-Hulten L. Calcium: effect of different amounts on nonheme- and heme-iron absorption in humans. Am J Clin Nutr 1991; 53: 112-119.
  • 23 Hansen SL, Ashwell MS, Moeser AJ, Fry RS, Knutson MD, Spears JW. High dietary iron reduces transporters involved in iron and manganese metabolism and increases intestinal permeability in calves. J Dairy Sci 2010; 93 (02) 656-665.
  • 24 Harvey L, Boksa P. Do prenatal immune activation and maternal iron deficiency interact to affect neurodevelopment and early behavior in rat offspring?. Brain Behav Immun. 2013 Sep 21. pii: S0889–1591(13)00463–7. doi: DOI: 10.1016/j.bbi.2013.09.009 [Epub ahead of print]
  • 25 Heilig M, Fürll M, Bäuml D. Potentielle Bedeutung des Spurenelementes Selen für die Entstehung der Gebärparese. (In Druck).
  • 26 Hie M, Iitsuka N, Otsuka T, Nakanishi A, Tsukamoto I. Zinc deficiency decreases osteoblasts and osteoclasts associated with the reduced expression of Runx2 and RANK. Bone 2011; 49 (06) 1152-1159.
  • 27 Jakob F, Becker K, Paar E, Ebert-Duemig R, Schütze N. Expression and regulation of thioredoxin reductases and other selenoproteins in bone. Methods Enzymol 2002; 347: 168-179.
  • 28 Kaganda J, Matsuo T, Suzuki H. Development of iron deficiency decreases zinc requirement of rats. J Nutr Sci Vitaminol 2003; 49: 234-240.
  • 29 Kirchgessner M, Schwarz NA. Beziehungen zwischen klinischen Zinkmangelsymptomen und Zinkstatus bei laktierenden Kühen. Zentralbl Veterinaermed 1975; 22: 572-582.
  • 30 Lee SD, Huang CY, Shu WT, Chen TH, Lin JA, Hsu HH, Lin CS, Liu CJ, Kuo WW, Chen LM. Pro-inflammatory states and IGF-I level in ischemic heart disease with low or high serum iron. Clin Chim Acta 2006; 370 (1–2): 50-56.
  • 31 Liuzzi JP, Lichten LA, Rivera S, Blanchard RK, Aydemir TB, Knutson MD, Ganz T, Cousins RJ. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA 2005; 102 (19) 6843-6848.
  • 32 Majewski PM, Thurston RD, Ramalingam R, Kiela PR, Ghishan FK. Cooperative role of NF-{kappa}B and poly(ADP-ribose) polymerase 1 (PARP-1) in the TNF-induced inhibition of PHEX expression in osteoblasts. J Biol Chem 2010; 285 (45) 34828-34838.
  • 33 Miller NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Letters 1996; 384: 240-242.
  • 34 Miller J, Brzezinska-Slebodzinska E, Madsen F. Oxidative stress, antioxidants, and animal function. J Dairy Sci 1993; 76: 2812-2823.
  • 35 Ninh NX, Thissen JP, Maiter D, Adam E, Mulumba N, Ketelslegers JM. Reduced liver insulin-like growth factor-I gene expression in young zincdeprived rats is associated with a decrease in liver growth hormone (GH) receptors and serum GH-binding protein. J Endocrinol 1995; 144 (03) 449-456.
  • 36 Nojiri H, Saita Y, Morikawa D, Kobayashi K, Tsuda C, Miyazaki T, Saito M, Marumo K, Yonezawa I, Kaneko K, Shirasawa T, Shimizu T. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res 2011; 26 (11) 2682-2694.
  • 37 Palacios C. Critical Reviews in Food Science and Nutrition 2006; 46: 621-628.
  • 38 Pallarés I, Campos MS, López-Aliaga I, Barrionuevo M, Gómez-Ayala AE, Alférez MJ, Hartiti S, Lisbona F. Supplementation of a cereal-milk formula with haem iron palliates the adverse effects of iron deficiency on calcium and magnesium metabolism in rats. Ann Nutr Metab 1996; 40 (02) 81-90.
  • 39 Petersen HH, Nielsen JP, Heegaard PM. Application of acute phase protein measurements in veterinary clinical chemistry. Vet Res 2004; 35 (02) 163-187.
  • 40 Pyorala S, Syvajarvi J. Bovine acute mastitis. Part I. Clinical aspects and parameters of inflammation in mastitis caused by different pathogens. Zentrabl Veterinärmed B 1987; 34 (08) 573-584.
  • 41 Røntved CM, Andersen JB, Dernfalk J, Ingvartsen KL. Effects of diet energy density and milking frequency in early lactation on tumor necrosis factor-alpha responsiveness in dairy cows. Vet Immunol Immunopathol 2005; 104 (3–4): 171-181.
  • 42 Seyrek-Intas K, Seyrek-Intas D, Failing K, Yilmazbas Mecitoglu G, Bostedt H. Relation between intravascular electrolyte level and course of parturition in dairy cows. Tierärztl Prax 2013; 41 (G): 289-296.
  • 43 Smart ME, Gudmundson J, Christensen DA. Trace Mineral Deficiencies in Cattle: A Review. Can Vet J 1981; 22 (12) 372-376.
  • 44 Smith EA, Knowlton KF, Petersson-Wolfe CS, Mullarky IK, Winston DR. The relationship between proinflammatory cytokines levels and onset of milk fever in dairy cows. J Anim Sci 2008; 86 E-Suppl. 2/J. Dairy Sci V 91, E-Suppl. 1: 234.
  • 45 Söllner-Donat S. Stoffwechseluntersuchungen bei Milchkühen in der ersten und in der Folgelaktation in einer Hochleistungsherde. Diss med vet Universität Leipzig; 2013
  • 46 St George TD, Murphy GM, Burren B, Uren MF. Studies on the pathogenesis of bovine ephemeral fever. IV: A comparison with the inflammatory events in milk fever of cattle. Vet Microbiol 1995; 46 (1–3): 131-142.
  • 47 Yaccoby S. The role of the proteasome in bone formation and osteoclastogenesis. IBMS BoneKEy 2010; 7: 147-155 http://www.nature.com/bonekey/knowledgeenvironment/2010/1004/bonekey20100439/images_article/bonekey20100439-f1.jpg
  • 48 Yamaguchi M. Role of zinc in bone formation and bone resorption. J Trace Elem Exp Med 1998; 11: 119-135.
  • 49 Yamaguchi M, Weitzmann MN. Zinc stimulates osteoblastogenesis and suppresses osteoclastogenesis by antagonizing NF- B activation. Mol Cell Biochem 2011; 355 (1–2): 179-186.
  • 50 Yang L, Cheng P, Chen C, He HB, Xie GQ, De Zhou H, Xie H, Wu XP, Luo XH. miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res 2012; 27 (07) 1598-1606.