Tierarztl Prax Ausg G Grosstiere Nutztiere 2014; 42(01): 11-21
DOI: 10.1055/s-0038-1623206
Originalartikel
Schattauer GmbH

Einfluss einer Fütterung von pansengeschütztem Cholin in der Transitphase bei Milchkühen

Teil 1: Stoffwechsel und MilchleistungInfluence of feeding rumen-protected choline to transition dairy cows.Part 1: Metabolism and milk yield
C. Furken
1   Klinik für Rinder, Stiftung Tierärztliche Hochschule Hannover
,
M. Hoedemaker
1   Klinik für Rinder, Stiftung Tierärztliche Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Eingegangen: 16 July 2013

Akzeptiert nach Revision: 12 November 2013

Publication Date:
05 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: Untersuchung der Wirkung des Futterzusatzstoffes Cholin auf den Energiestoffwechsel und die Milchleistung von Milchkühen. Material und Methoden: 298 Tiere einer hochleistenden Milchviehherde (mittlere Tagesmilchmenge: 32 l), randomisiert mit einer Stratifizierung nach Laktationsalter, wurden in zwei Gruppen eingeteilt und erhielten von Tag 21 ante partum (a. p.) bis Tag 21 post partum (p. p.) 0 oder 15 g pansengeschütztes Cholin (entspricht 0 bzw. 60 g ReaShure®/Tier/Tag). Blutmetaboliten wurden im peripartalen Zeitraum bei allen Tieren (Glukose, β-Hydroxybutyrat [BHB]) bzw. stichprobenartig (Insulin, Insulin-ähnlicher Wachstumsfaktor [IGF-1], freie Fettsäuren [NEFA]) untersucht. Ein Index für Insulinsensitivität (RQUICKI) wurde berechnet und Milchleistungsdaten (Milchleistungsprüfungen, 100-Tage-, 305-Tage-, Milchpeakleistungen, Kolostrumqualität) wurden ausgewertet. In der Statistik wurde zwischen den Fütterungsgruppen sowie der Parität unterschieden und deren Interaktionen untersucht. Ergebnisse: Bei den untersuchten Variablen ließen sich, außer einer niedrigeren 305-Tage-Leistung bei der Versuchsgruppe (p < 0,05), weder Unterschiede zwischen den Fütterungsgruppen noch Interaktionen nachweisen. Bei multiparen Kühen ergaben sich im Vergleich zu Erstlaktierenden weniger subklinische Ketosen ante partum und post partum (OR a. p.: 0,178; OR p. p.: 0,310), häufiger Grenzwertüberschreitungen bei der Gesamtzellzahl (OR 2,584–3,298) und eine höhere Milchleistung (p < 0,05). Schlussfolgerung und klinische Relevanz: Eine Supplementierung mit Cholin beeinflusste in dieser Milchviehherde den Energiehaushalt und die Milchleistung nicht. Weitere Studien in unterschiedlichen Milchviehherden sollten diese Thematik vertiefen.

Summary

Objective: The effects of rumen-protected choline (RPC) on energy metabolism and milk production in dairy cows were analyzed. Material and methods: Two hundred and ninety-eight primiparous and multiparous cows of a high producing dairy herd (mean daily milk yield: 32 l) were randomly assigned to control or treatment groups and were fed with 0 or 15 g RPC, respectively, (corresponding to 0 and 60 g/d Rea Shure®, respectively) from 21 days before expected calving to 21 days postpartum (p. p.). Blood metabolites were determined for either all cows (glucose, β-hydroxybutyrate [BHB]) or randomly (insulin, insulin-like growth factor-1 [IGF-1], non-esterified fatty acids [NEFA]) during the periparturient period. An index for insulin sensitivity (RQUICKI) was calculated and milk production data (dairy herd improvement tests, 100-days-, 305-days-, milk peak yield, colostrum quality) was analyzed. In the statistical analysis, a distinction was made between the feeding groups and between the parity, and their interactions were analyzed. Results: With the exception of a lower 305-day-milk yield in the treatment group (p < 0.05), the evaluated variables did not show statistically significant differences between the feeding groups and no interactions could be found. In comparison to heifers, multi parous cows had less cases of subclinical ketosis a. p. and p. p. (OR a. p.: 0.178; OR p. p.: 0.310), more of them were above the thre shold for somatic cell counts (OR 2.584–3.298), and their milk yields were higher (p < 0.05). Conclusion and clinical relevance: Supplementing RPC did not affect the energy metabolism or the milk pro duction in this herd. Further research in other dairy herds should focus on this topic.

 
  • Literatur

  • 1 Baumgartner W. Klinische Propädeutik der Haus- und Heimtiere. 7. Aufl.. Stuttgart: Parey; 2009
  • 2 Brüsemeister F, Südekum KH. Rumen-protected choline for dairy cows: in situ evaluation of a commercial source and literature evaluation of effects on performance and interactions between methionine and choline metabolism. Anim Res 2006; 55: 93-104.
  • 3 Cadorniga-Valino C, Grummer RR, Armentano LE, Donkin SS, Bertics SJ. Effects of fatty acids and hormones on fatty acid metabolism and gluconeogenesis in bovine hepatocytes. J Dairy Sci 1997; 80 (04) 646-656.
  • 4 Chung YH, Brown NE, Martinez CM, Cassidy TW, Vargal GA. Effects of rumen-protected choline and dry propylene glycol on feed intake and blood parameters for Holstein dairy cows in early lactation. J Dairy Sci 2009; 92 (06) 2729-2736.
  • 5 De Kruif A, Mansfeld R, Hoedemaker M. Tierärztliche Bestandsbetreuung beim Milchrind. 2. Auflage.. Stuttgart: Enke; 2007
  • 6 Dirksen G, Gründer HD, Stöber M. Innere Medizin und Chirurgie des Rindes. 5. Aufl.. Stuttgart: Parey; 2006
  • 7 Doepel L, Lapierre H, Kennelly JJ. Peripartum performance and metabolism of dairy cows in response to prepartum energy and protein intake. J Dairy Sci 2002; 85 (09) 2315-2334.
  • 8 Donkin SS. Rumen-protected choline: Potential for improving health and production in dairy cows. Proceedings of the Tri-State Dairy Nutrition Conference; 2002 Apr 16–17. Fort Wayne, IN, USA: The Ohio State University; 2002: 55-66.
  • 9 Duffield TF. Impact, prevention and monitoring of subclinical ketosis in transition dairy cows [Internet]. 2002 [erneuert am 08.07.2013; zitiert am 08.04.2013]. Verfügbar unter: http://conservancy.umn.edu/bitstream/108750/1/Duffield.pdf
  • 10 Duffield TF, LeBlanc SJ. Interpretation of serum metabolic parameters around the transition period [Internet]. 2009 [erneuert am 08.07.2013; zitiert am 08.04.2013]. Verfügbar unter: http://www.cals.arizona.edu/ans/swnmc/Proceedings/2009/11Duffield_2_09
  • 11 Engelhardt W v, Breves G. Physiologie der Haustiere. 2. Aufl.. Stuttgart: Enke; 2004
  • 12 Fleenor WA, Stott GH. Hydrometer test for estimation of immunoglobulin concentration in bovine colostrum. J Dairy Sci 1980; 63 (06) 973-977.
  • 13 Grummer RR. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J Dairy Sci 1993; 76 (12) 3882-3896.
  • 14 Grummer RR. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J Anim Sci 1995; 73 (09) 2820-2833.
  • 15 Grummer RR, Cooke RF. Supplemental choline for prevention and alleviation of fatty liver in dairy cattle. Proceedings of the 40th Pacific Northwest Animal Nutrition Conference; 2005 Oct 9–10. Boise, ID, USA: University of Idaho; 2005: 1-10.
  • 16 Guretzky NA, Carlson DB, Garrett JE, Drackley JK. Lipid metabolite profile and milk production for holstein and jersey cows fed rumen-protected choline during the periparturient period. J Dairy Sci 2006; 89 (01) 188-200.
  • 17 Hartwell JR, Cecava MJ, Donkin SS. Impact of dietary rumen undegradable protein and rumen-protected choline on intake, peripartum liver triacylglyceride, plasma metabolites and milk production in transition dairy cows. J Dairy Sci 2000; 83 (12) 2907-2917.
  • 18 Herbein JH, Aiello RJ, Eckler LI, Pearson RE, Akers RM. Glucagon, insulin, growth hormone, and glucose concentrations in blood plasma of lactating dairy cows. J Dairy Sci 1985; 68 (02) 320-325.
  • 19 Holtenius P, Holtenius K. A model to estimate insulin sensitivity in dairy cows. Acta Vet Scand 2007; 49: 29.
  • 20 Horn F, Moc I, Schneider N, Grillhösl C, Berghold S, Lindenmeier G. Biochemie des Menschen. 3. Aufl.. Stuttgart: Thieme; 2005
  • 21 Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism 1978; 27 (12) 1893-1902.
  • 22 Kusenda M. Insulin-Sensitivität und Insulin-Response nach einer einmaligen Dexamethasonbehandlung bei Milchkühen in der Frühlaktation. Diss med vet Stiftung Tierärztliche Hochschule; Hannover; 2010
  • 23 Kusenda M, Kaske M, Piechotta M, Locher L, Starke A, Huber K, Rehage J. Effects of dexamethasone-21-isonicotinate on peripheral insulin action in dairy cows 5 days after surgical correction of abomasal displacement. J Vet Intern Med 2013; 27 (01) 200-206.
  • 24 Lima FS, SaFilho MF, Greco LF, Susca F, Magalhaes VJA, Garret J, Santos JEP. Effects of feeding rumen-protected choline (RPC) on lactation and metabolism. J Dairy Sci 2007; 90 (Suppl. 01) 174.
  • 25 Lucy MC. Micronutrients and their interaction with liver in supporting fertility in high producing dairy cows [Internet]. 2008 [erneuert am 08.07.2013; zitiert am 08.04.2013]. Verfügbar unter: http://www.cals.arizona.edu/ans/swnmc/Proceedings/2008/01Lucy_08.pdf
  • 26 Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab 2008; 294 (01) E15-26.
  • 27 Nakao T, Hoedemaker M, Feldman M, Grundling N, Gautam G. Energy balance in dairy cows in the dry and early lactation periods monitored by serum NEFA and its association with subclinical ketosis and reproductive performance. Proceedings of the 116th Annual Conference of the Japanese Society of Animal Science; 2013 Mar 27–30. Hiroshima, Japan: Rakuno Gakuen University, Japan; 2013
  • 28 Oelrichs WA, Lucy MC, Kerley MS, Spain JN. Feeding soybeans and rumen-protected choline to dairy cows during periparturient period and early lactation. 1. Effects on production and energy balance. J Dairy Sci 2004; 87 (Suppl. 01) 344.
  • 29 Overton TR. Managing metabolism of transition dairy cows through nutrition. Proceedings of the 36th Pacific Northwest Animal Nutrition Conference; 2001 Oct 9–18. Boise, ID, USA: University of Idaho; 171-188.
  • 30 Perseghin G, Caumo A, Caloni M, Testolin G, Luzi L. Incorporation of the fasting plasma FFA concentration into quicki improves its association with insulin sensitivity in nonobese individuals. J Clin Endocrinol Metab 2001; 86 (10) 4776-4781.
  • 31 Piechotta M, Sander AK, Kastelic JP, Wilde R, Heppelmann M, Rudolphi B, Schuberth HJ, Bollwein H, Kaske M. Short communication: Prepartum plasma insulin-like growth factor-I concentrations based on day of insemination are lower in cows developing postpartum diseases. J Dairy Sci 2012; 95 (03) 1367-1370.
  • 32 Piepenbrink MS, Overton TR. Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the periparturient period. J Dairy Sci 2003; 86 (05) 1722-1733.
  • 33 Pires JA, Souza AH, Grummer RR. Induction of hyperlipidemia by intravenous infusion of tallow emulsion causes insulin resistance in Holstein cows. J Dairy Sci 2007; 90 (06) 2735-2744.
  • 34 Prange D. Einfluss einer Zufütterung von Propylenglykol im peripartalen Zeitraum auf Tier- und Stoffwechselgesundheit sowie Reproduktions- und Milchleistung bei hochleistenden Milchkühen. Diss med vet Stiftung Tierärztliche Hochschule; Hannover: 2001
  • 35 Putnam DE. Rumen-stable choline’s role in transition cow liver metabolism and performance [Internet]. 2004 [erneuert am 08.07.2013; zitiert am 08.04.2013]. Verfügbar unter: http://conservancy.umn.edu/bitstream/108764/1/Putnam.pdf
  • 36 Rizza RA, Mandarino LJ, Gerich JE. Dose-response characteristics for effects of insulin on production and utilization of glucose in man. Am J Physiol 1981; 240 (06) E630-639.
  • 37 Strang BD, Bertics SJ, Grummer RR, Armentano LE. Effect of long-chain fatty acids on triglyceride accumulation, gluconeogenesis, and ureagenesis in bovine hepatocytes. J Dairy Sci 1998; 81 (03) 728-739.
  • 38 Van Zijderveld IS. Evaluation of the rumen stability of different bypass choline sources for ruminants. Schothorst Feed Research; 2007. Report No. 818.
  • 39 Zahra LC, LeBlanc SJ, Leslie KE, Duffield TF, Overton TR, Putnam DE. Effects of rumen-protected choline and monensin on milk production and metabolism of periparturient dairy cows. J Dairy Sci 2006; 89 (12) 4808-4818.