Tierarztl Prax Ausg G Grosstiere Nutztiere 2014; 42(01): 5-10
DOI: 10.1055/s-0038-1623205
Originalartikel
Schattauer GmbH

Evaluation eines neuen elektronischen Handmess geräts zur Messung von β-Hydroxybutyrat bei Milchkühen

Evaluation of a new electronic handheld meter for measurement of β-hydroxybutyric acid in dairy cows
A. Mahrt
1   Tierklinik für Fortpflanzung, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin
,
O. Burfeind
1   Tierklinik für Fortpflanzung, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin
,
R. Voigtsberger
1   Tierklinik für Fortpflanzung, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin
,
A. Müller
2   Imcarmed GmbH, Saalfeld
,
W. Heuwieser
1   Tierklinik für Fortpflanzung, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin
› Author Affiliations
Further Information

Publication History

Eingegangen 23 May 2013

Akzeptiert nach Revision: 29 October 2013

Publication Date:
05 January 2018 (online)

Zusammenfassung

Gegenstand und Ziel: Die subklinische Ketose (SCK), eine weitverbreitete Stoffwechselkrankheit frischlaktierender Milchkühe, ist definiert durch das Auftreten erhöhter Mengen zirkulierender Ketonkörper bei Fehlen klinischer Symptome. Daher beschränken sich die Möglichkeiten der Diagnostik auf den Nachweis dieser Ketonkörper in verschiedenen Körperflüssigkeiten. Ziel der Studie war die Evaluation eines neuen elektronischen mobilen Messgeräts (NovaVet) zur Messung von β-Hydroxybutyrat (BHB) im Nativblut von Milchkühen. Material und Methoden: Anhand von Blutproben von 155 laktierenden Milchkühen erfolgte ein Vergleich zwischen den mit dem Gerät ermittelten und den in einem kommerziellen Labor gemessenen BHB-Konzentrationen. Zur Auswertung wurden der Rangkorrelationskoeffizient nach Spearman bestimmt, ein Wilcoxon-Test durchgeführt und die gepaarten Messwerte nach Bland und Altman graphisch dargestellt. Ferner wurden für das Gerät spezifische BHB-Grenzwerte im Vergleich zu international anerkannten Grenzwerten zur Diagnose einer SCK mithilfe einer Receiver-Operating-Characteristic(ROC)-Analyse ermittelt und die entsprechenden Testcharakteristika bestimmt. Ergebnisse: Zwischen den vom Gerät und den im Labor gemessenen BHB-Konzentrationen bestand eine hohe Korrelation (rs = 0,87; p < 0,05). Die vom Gerät (Median 1,0 mmol/l; Interquartilsabstand [IQR] 0,7–1,3 mmol/l) und im Labor (Median 0,9 mmol/l; IQR 0,7–1,1 mmol/l) gemessenen BHB-Konzentrationen differierten (Median 0,0 mmol/l; IQR –0,1 bis 0,2 mmol/l; p < 0,05). Mit dem Gerät konnte eine SCK bei einem Grenzwert von 1,2 mmol/l BHB mit einer Sensitivität von 97% und einer Spezifität von 82% diagnostiziert werden. Als Goldstandard diente der Laborwert. Schlussfolgerung und klinische Relevanz: Das BHB-Messgerät zeigte eine gute Übereinstimmung mit dem Labor und gute Testeigenschaften. Seine geringfügige Messabweichung im Vergleich zum Labor kann unter praktischen Bedingungen vernachlässigt werden, doch muss mit einer gewissen Anzahl falsch als erkrankt diagnostizierter Tiere gerechnet werden. Das Gerät kann für die Dia gnostik der SCK beim Rind empfohlen werden.

Summary

Objective: Subclinical ketosis (SCK), an important disease in lactating dairy cows, is defined as the presence of elevated concentrations of circulating ketone bodies without the development of clinical signs. Therefore, diagnostic methods are limited to the detection of the concentrations of ketone bodies in different body fluids. The objective of this study was to evaluate a recently developed electronic handheld meter (NovaVet) for the determination of β-hydroxybutyric acid (BHB) in the blood of dairy cows. Material and methods: A total of 155 lactating dairy cows were included in the trial. Blood samples were taken from each cow and analyzed using the BHB meter. The obtained concentrations were compared to the results determined by a commercial laboratory. The Spearman’s rank correlation coefficient was determined between the two methods. A Wilcoxon test was performed and a Bland-Altman plot was generated. Test characteristics (sensitivity, specificity, positive and negative predictive value) for established BHB cut points for the diagnosis of SCK were calculated using receiver operating characteristic (ROC) analysis. Results: The two methods were highly correlated (rs = 0.87; p < 0.05). A difference (median 0.0 mmol/l; interquartile range [IQR] –0.1 to 0.2 mmol/l; p < 0.05) was found between BHB concentrations determined using the BHB meter (median 1.0 mmol/l; IQR 0.7–1.3 mmol/l) and by the laboratory (median 0.9 mmol/l; IQR 0.7–1.1 mmol/l). Using a cut point of 1.2 mmol/l, sensitivity and specificity of the BHB meter were 97% and 82%, respectively. Conclusion and clinical relevance: There was a good agreement between BHB concentrations determined using the BHB meter and the laboratory. Furthermore, the BHB meter displayed good test characteristics. The specificity of 82% results in a number of false-positive results. However, this new device can be recommended for the detection of SCK in cows under practical conditions.

 
  • Literatur

  • 1 Andersson L. Subclinical ketosis in dairy cows. Vet Clin North Am Food Anim Pract 1988; 4: 233-251.
  • 2 Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 1: 307-310.
  • 3 Byrne HA, Tieszen KL, Hollis S, Dornan TL, New JP. Evaluation of an electrochemical sensor for measuring blood ketones. Diabetes Care 2000; 23: 500-503.
  • 4 Carrier J, Stewart S, Godden S, Fetrow J, Rapnicki P. Evaluation and use of three cowside tests for detection of subclinical ketosis in early postpartum cows. J Dairy Sci 2004; 87: 3725-3735.
  • 5 Duffield TF, Sandals D, Leslie KE, Lissemore K, McBride BW, Lumsden JH, Dick P, Bagg R. Efficacy of monensin for the prevention of subclinical ketosis in lactating dairy cows. J Dairy Sci 1998; 81: 2866-2873.
  • 6 Duffield TF, Lissemore KD, McBride BW, Leslie KE. Impact of hyperketonemia in early lactation dairy cows on health and production. J Dairy Sci 2009; 92: 571-580.
  • 7 Geishauser T, Leslie K, Kelton D, Duffield T. Evaluation of five cowside tests for use with milk to detect subclinical ketosis in dairy cows. J Dairy Sci 1998; 81: 438-443.
  • 8 Geishauser T, Leslie K, Tenhag J, Bashiri A. Evaluation of eight cow-side ketone tests in milk for detection of subclinical ketosis in dairy cows. J Dairy Sci 2000; 83: 296-299.
  • 9 Geishauser T, Leslie K, Kelton D, Duffield T. Monitoring for subclinical ketosis in dairy herds. Comp Cont Educ Vet 2001; 23: 65-71.
  • 10 Hammon DS, Evjen IM, Dhiman TR, Goff JP, Walters JL. Neutrophil function and energy status in holstein cows with uterine health disorders. Vet Immunol Immunopathol 2006; 113: 21-29.
  • 11 Henderson DW, Schlesinger DP. Use of a point-of-care beta-hydroxybutyrate sensor for detection of ketonemia in dogs. Can Vet J 2010; 51: 1000-1002.
  • 12 Herdt TH. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet Clin North Am Food Anim Pract 2000; 16: 215-230.
  • 13 Hoeben D, Heyneman R, Burvenich C. Elevated levels of -hydroxybutyric acid in periparturient cows and in vitro effect on respiratory burst activity of bovine neutrophils. Vet Immunol Immunopathol 1997; 58: 165-170.
  • 14 Hogeveen H. Costs of production diseases. Proc 27th World Buiatrics Congress. Lisbon, Portugal: 2012: 36-42.
  • 15 Iwersen M, Falkenberg U, Voigtsberger R, Forderung D, Heuwieser W. Evaluation of an electronic cowside test to detect subclinical ketosis in dairy cows. J Dairy Sci 2009; 92: 2618-2624.
  • 16 Kaufmann T, Drillich M, Tenhagen B-A, Heuwieser W. Correlations between periparturient serum concentrations of non-esterified fatty acids, beta-hydroxybutyric acid, bilirubin, and urea and the occurrence of clinical and subclinical postpartum bovine endometritis. BMC Vet Res 2010; 6: 47.
  • 17 LeBlanc SJ, Leslie KE, Duffield TF. Metabolic predictors of displaced abomasum in dairy cattle. J Dairy Sci 2005; 88: 159-170.
  • 18 McArt JAA, Nydam DV, Oetzel GR. Epidemiology of subclinical ketosis in early lactation dairy cattle. J Dairy Sci 2012; 95: 5056-5066.
  • 19 Oetzel GR. Monitoring and testing dairy herds for metabolic disease. Vet Clin North Am Food Anim Pract 2004; 20: 651-674.
  • 20 Ospina PA, Nydam DV, Stokol T, Overton TR. Association between the proportion of sampled transition cows with increased nonesterified fatty acids and -hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J Dairy Sci 2010; 93: 3595-3601.
  • 21 Panousis N, Brozos C, Karagiannis I, Giadinis ND, Lafi S, Kritsepi-Konstantinou M. Evaluation of precision xceed® meter for on-site monitoring of blood -hydroxybutyric acid and glucose concentrations in dairy sheep. Res Vet Sci 2012; 93: 435-439.
  • 22 Roberts T, Chapinal N, LeBlanc SJ, Kelton DF, Dubuc J, Duffield TF. Metabolic parameters in transition cows as indicators for early-lactation culling risk. J Dairy Sci 2012; 95: 3057-3063.
  • 23 Suriyasathaporn W, Daemen AJJM, Noordhuizen-Stassen EN, Dieleman SJ, Nielen M, Schukken YH. -hydroxybutyrate levels in peripheral blood and ketone bodies supplemented in culture media affect the in vitro chemotaxis of bovine leukocytes. Vet Immunol Immunopathol 1999; 68: 177-186.
  • 24 Suthar VS, Canelas-Raposo J, Deniz A, Heuwieser W. Prevalence of subclinical ketosis and relationships with postpartum diseases in european dairy cows. J Dairy Sci 2013; 96: 2925-2938.
  • 25 Walsh RB, Walton JS, Kelton DF, LeBlanc SJ, Leslie KE, Duffield TF. The effect of subclinical ketosis in early lactation on reproductive performance of postpartum dairy cows. J Dairy Sci 2007; 90: 2788-2796.
  • 26 Walsh RB, Kelton DF, Duffield TF, Leslie KE, Walton JS, LeBlanc SJ. Prevalence and risk factors for postpartum anovulatory condition in dairy cows. J Dairy Sci 2007; 90: 315-324.
  • 27 Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3: 32-35.
  • 28 Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561-577.