Semin Liver Dis 2018; 38(01): 041-050
DOI: 10.1055/s-0037-1621712
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genetic and Epigenetic Heterogeneity in Normal Liver Homeostasis and Its Implications for Liver Disease and Hepatocellular Cancer

Ryan A. Hlady
1   Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, and Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota
,
Keith D. Robertson
1   Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, and Mayo Clinic Comprehensive Cancer Center, Mayo Clinic, Rochester, Minnesota
› Author Affiliations
Further Information

Publication History

Publication Date:
22 February 2018 (online)

Abstract

Hepatocellular carcinoma (HCC) is the most prevalent primary tumor of the liver, and is steadily becoming one of the most lethal cancers worldwide. Liver resection, which is the recommended procedure for early localized HCC, results in frequent recurrence (50–70%), while the standard of care for late-stage HCC, multikinase inhibitors, only improves survival by a few months. The lack of success for these treatment modalities is attributable, at least in part, to marked phenotypic heterogeneity within the tumor. Intratumoral heterogeneity (ITH) has emerged as a defining characteristic of human tumors, with individual cancer cells displaying distinct differences in properties including growth rate, metastatic capacity, and response to treatment. This heterogeneity, which is unlikely to be captured from a biopsy, impacts outcome because a single treatment targeting one cancer-specific pathway would spare tumor cells having distinct characteristics. Development of effective biomarkers remains a major challenge for similar reasons. Understanding, interpreting, and circumventing the impact of ITH is therefore paramount for developing reliable biomarkers and designing effective individualized treatment strategies for HCC.

 
  • References

  • 1 Hlady RA, Tiedemann RL, Puszyk W. , et al. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis. Oncotarget 2014; 5 (19) 9425-9443
  • 2 Schulze K, Imbeaud S, Letouzé E. , et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015; 47 (05) 505-511
  • 3 Mazor T, Pankov A, Johnson BE. , et al. DNA methylation and somatic mutations converge on the cell cycle and define similar evolutionary histories in brain tumors. Cancer Cell 2015; 28 (03) 307-317
  • 4 Brocks D, Assenov Y, Minner S. , et al; ICGC Early Onset Prostate Cancer Project. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer. Cell Reports 2014; 8 (03) 798-806
  • 5 Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 2015; 524 (7564): 180-185
  • 6 Alison MR, Lin WR. Hepatocytes come out of left field. Hepatology 2016; 63 (03) 1041-1043
  • 7 Miyajima A, Tanaka M, Itoh T. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 2014; 14 (05) 561-574
  • 8 Sung WK, Zheng H, Li S. , et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet 2012; 44 (07) 765-769
  • 9 Brown TM, Fee E. Rudolf Carl Virchow: medical scientist, social reformer, role model. Am J Public Health 2006; 96 (12) 2104-2105
  • 10 Birkbak NJ, Andersen JB. Heterogeneity among liver cancer--a hurdle to optimizing therapy. Gastroenterology 2016; 150 (04) 818-821
  • 11 Navin NE, Hicks J. Tracing the tumor lineage. Mol Oncol 2010; 4 (03) 267-283
  • 12 Kenmochi K, Sugihara S, Kojiro M. Relationship of histologic grade of hepatocellular carcinoma (HCC) to tumor size, and demonstration of tumor cells of multiple different grades in single small HCC. Liver 1987; 7 (01) 18-26
  • 13 An FQ, Matsuda M, Fujii H. , et al. Tumor heterogeneity in small hepatocellular carcinoma: analysis of tumor cell proliferation, expression and mutation of p53 AND beta-catenin. Int J Cancer 2001; 93 (04) 468-474
  • 14 Hirohashi S, Blum HE, Ishak KG. , et al. Tumours of the liver and intrahepatic bile ducts. In: Hamilton SR, Aaltonen LA. , eds. Pathology and Genetics of Tumors of the Digestive System. France: IARC Press; 2000: 157-202
  • 15 Guichard C, Amaddeo G, Imbeaud S. , et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44 (06) 694-698
  • 16 Lee JS, Chu IS, Heo J. , et al. Classification and prediction of survival in hepatocellular carcinoma by gene expression profiling. Hepatology 2004; 40 (03) 667-676
  • 17 Friemel J, Rechsteiner M, Frick L. , et al. Intratumor heterogeneity in hepatocellular carcinoma. Clin Cancer Res 2015; 21 (08) 1951-1961
  • 18 Lo RC, Leung CO, Chok KS, Ng IO. Variation of stemness markers expression in tumor nodules from synchronous multi-focal hepatocellular carcinoma - an immunohistochemical study. Diagn Pathol 2017; 12 (01) 56
  • 19 Fujimoto A, Totoki Y, Abe T. , et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2012; 44 (07) 760-764
  • 20 Kan Z, Zheng H, Liu X. , et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res 2013; 23 (09) 1422-1433
  • 21 Totoki Y, Tatsuno K, Yamamoto S. , et al. High-resolution characterization of a hepatocellular carcinoma genome. Nat Genet 2011; 43 (05) 464-469
  • 22 Lee JS. The mutational landscape of hepatocellular carcinoma. Clin Mol Hepatol 2015; 21 (03) 220-229
  • 23 Ding L, Ley TJ, Larson DE. , et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481 (7382): 506-510
  • 24 Shi JY, Xing Q, Duan M. , et al. Inferring the progression of multifocal liver cancer from spatial and temporal genomic heterogeneity. Oncotarget 2016; 7 (03) 2867-2877
  • 25 Ling S, Hu Z, Yang Z. , et al. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc Natl Acad Sci U S A 2015; 112 (47) E6496-E6505
  • 26 Zhai W, Lim TK, Zhang T. , et al. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma. Nat Commun 2017; 8: 4565
  • 27 Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B, Nowak MA. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 2015; 525 (7568): 261-264
  • 28 Xue R, Li R, Guo H. , et al. Variable intra-tumor genomic heterogeneity of multiple lesions in patients with hepatocellular carcinoma. Gastroenterology 2016; 150 (04) 998-1008
  • 29 Gao Q, Wang ZC, Duan M. , et al. Cell culture system for analysis of genetic heterogeneity within hepatocellular carcinomas and response to pharmacologic agents. Gastroenterology 2017; 152 (01) 232-242.e4
  • 30 Marquardt JU, Seo D, Andersen JB. , et al. Sequential transcriptome analysis of human liver cancer indicates late stage acquisition of malignant traits. J Hepatol 2014; 60 (02) 346-353
  • 31 Zheng C, Zheng L, Yoo JK. , et al. Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell 2017; 169 (07) 1342-1356.e16
  • 32 El-Khoueiry AB, Sangro B, Yau T. , et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389 (10088): 2492-2502
  • 33 Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet 2017; 18 (11) 643-658 . Doi: 10.1038/nrg.2017.57
  • 34 Herceg Z, Ghantous A, Wild CP. , et al. Roadmap for investigating epigenome deregulation and environmental origins of cancer. Int J Cancer 2017; DOI: 10.1002/ijc.31014.
  • 35 Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 2017; 169 (07) 1327-1341.e23
  • 36 Opavsky R, Wang SH, Trikha P. , et al. CpG island methylation in a mouse model of lymphoma is driven by the genetic configuration of tumor cells. PLoS Genet 2007; 3 (09) 1757-1769
  • 37 Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol 2015; 12 (08) 436
  • 38 Zeller C, Dai W, Steele NL. , et al. Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling. Oncogene 2012; 31 (42) 4567-4576
  • 39 Zhang YW, Zheng Y, Wang JZ. , et al. Integrated analysis of DNA methylation and mRNA expression profiling reveals candidate genes associated with cisplatin resistance in non-small cell lung cancer. Epigenetics 2014; 9 (06) 896-909
  • 40 Nyce JW. Drug-induced DNA hypermethylation: a potential mediator of acquired drug resistance during cancer chemotherapy. Mutat Res 1997; 386 (02) 153-161
  • 41 Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer 2014; 14 (11) 747-753
  • 42 Sharma SV, Lee DY, Li B. , et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141 (01) 69-80
  • 43 Hegi ME, Diserens AC, Gorlia T. , et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 2005; 352 (10) 997-1003
  • 44 Plumb JA, Strathdee G, Sludden J, Kaye SB, Brown R. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res 2000; 60 (21) 6039-6044
  • 45 Lee S, Lee HJ, Kim JH, Lee HS, Jang JJ, Kang GH. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol 2003; 163 (04) 1371-1378
  • 46 Um TH, Kim H, Oh BK. , et al. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol 2011; 54 (05) 939-947
  • 47 Di Gioia S, Bianchi P, Destro A. , et al. Quantitative evaluation of RASSF1A methylation in the non-lesional, regenerative and neoplastic liver. BMC Cancer 2006; 6: 89
  • 48 Gravina S, Dong X, Yu B, Vijg J. Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol 2016; 17 (01) 150
  • 49 Busuttil RA, Garcia AM, Reddick RL. , et al. Intra-organ variation in age-related mutation accumulation in the mouse. PLoS One 2007; 2 (09) e876
  • 50 Hlady RA, Zhou D, Puszyk W, Roberts LR, Liu C, Robertson KD. Initiation of aberrant DNA methylation patterns and heterogeneity in precancerous lesions of human hepatocellular cancer. Epigenetics 2017; 12 (03) 215-225
  • 51 Lin DC, Mayakonda A, Dinh HQ. , et al. Genomic and epigenomic heterogeneity of hepatocellular carcinoma. Cancer Res 2017; 77 (09) 2255-2265
  • 52 Stewart GD, Powles T, Van Neste C. , et al. Dynamic epigenetic changes to VHL occur with sunitinib in metastatic clear cell renal cancer. Oncotarget 2016; 7 (18) 25241-25250
  • 53 Hao JJ, Lin DC, Dinh HQ. , et al. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat Genet 2016; 48 (12) 1500-1507
  • 54 Saeter G, Schwarze PE, Nesland JM, Juul N, Pettersen EO, Seglen PO. The polyploidizing growth pattern of normal rat liver is replaced by divisional, diploid growth in hepatocellular nodules and carcinomas. Carcinogenesis 1988; 9 (06) 939-945
  • 55 Guidotti JE, Brégerie O, Robert A, Debey P, Brechot C, Desdouets C. Liver cell polyploidization: a pivotal role for binuclear hepatocytes. J Biol Chem 2003; 278 (21) 19095-19101
  • 56 Nadal C, Zajdela F. Hepatic polyploidy in the rat. IV. Experimental changes in the nucleolar volume of liver cells and their mechanisms of regulation. Exp Cell Res 1967; 48 (03) 518-528
  • 57 Duncan AW, Taylor MH, Hickey RD. , et al. The ploidy conveyor of mature hepatocytes as a source of genetic variation. Nature 2010; 467 (7316): 707-710
  • 58 Wang MJ, Chen F, Lau JTY, Hu YP. Hepatocyte polyploidization and its association with pathophysiological processes. Cell Death Dis 2017; 8 (05) e2805
  • 59 Selmecki AM, Maruvka YE, Richmond PA. , et al. Polyploidy can drive rapid adaptation in yeast. Nature 2015; 519 (7543): 349-352
  • 60 Beach RR, Ricci-Tam C, Brennan CM. , et al. Aneuploidy causes non-genetic individuality. Cell 2017; 169 (02) 229-242.e21
  • 61 Song Q, Chen ZJ. Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 2015; 24: 101-109
  • 62 Hsu SH, Delgado ER, Otero PA. , et al. MicroRNA-122 regulates polyploidization in the murine liver. Hepatology 2016; 64 (02) 599-615
  • 63 Zheng L, Dai H, Zhou M. , et al. Polyploid cells rewire DNA damage response networks to overcome replication stress-induced barriers for tumour progression. Nat Commun 2012; 3: 815
  • 64 Taub R. Liver regeneration: from myth to mechanism. Nat Rev Mol Cell Biol 2004; 5 (10) 836-847
  • 65 Stocker E, Wullstein HK, Brau G. Capacity of regeneration in liver epithelia of juvenile, repeated partially hepatectomized rats. Autoradiographic studies after continuous infusion of 3H-thymidine (author's transl). Virchows Arch B Cell Pathol Incl Mol Pathol 1973; 14: 93-103
  • 66 Ferri D, Moro L, Mastrodonato M. , et al. Ultrastructural zonal heterogeneity of hepatocytes and mitochondria within the hepatic acinus during liver regeneration after partial hepatectomy. Biol Cell 2005; 97: 277-288
  • 67 Fausto N, Campbell JS. The role of hepatocytes and oval cells in liver regeneration and repopulation. Mech Dev 2003; 120 (01) 117-130
  • 68 Kaji K, Factor VM, Andersen JB. , et al. DNMT1 is a required genomic regulator for murine liver histogenesis and regeneration. Hepatology 2016; 64 (02) 582-598
  • 69 Bellet MM, Masri S, Astarita G, Sassone-Corsi P, Della Fazia MA, Servillo G. Histone deacetylase SIRT1 controls proliferation, circadian rhythm, and lipid metabolism during liver regeneration in mice. J Biol Chem 2016; 291 (44) 23318-23329
  • 70 Page A, Paoli P, Moran Salvador E, White S, French J, Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol 2016; 64 (03) 661-673
  • 71 Sun X, Chuang JC, Kanchwala M. , et al. Suppression of the SWI/SNF component Arid1a promotes mammalian regeneration. Cell Stem Cell 2016; 18 (04) 456-466
  • 72 Ancey PB, Ecsedi S, Lambert MP. , et al. TET-catalyzed 5-hydroxymethylation precedes HNF4A promoter choice during differentiation of bipotent liver progenitors. Stem Cell Reports 2017; 9 (01) 264-278
  • 73 Zeybel M, Hardy T, Wong YK. , et al. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med 2012; 18 (09) 1369-1377
  • 74 Tong CM, Ma S, Guan XY. Biology of hepatic cancer stem cells. J Gastroenterol Hepatol 2011; 26 (08) 1229-1237
  • 75 Mu X, Español-Suñer R, Mederacke I. , et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest 2015; 125 (10) 3891-3903
  • 76 Torres CM, Biran A, Burney MJ. , et al. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science 2016; 353 (6307): 353
  • 77 Easwaran H, Johnstone SE, Van Neste L. , et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res 2012; 22 (05) 837-849
  • 78 Isoai A, Giga-Hama Y, Shinkai K, Mukai M, Akedo H, Kumagai H. Purification and characterization of tumor invasion-inhibiting factors. Jpn J Cancer Res 1990; 81 (09) 909-914
  • 79 Petrizzo A, Caruso FP, Tagliamonte M. , et al. Identification and validation of HCC-specific gene transcriptional signature for tumor antigen discovery. Sci Rep 2016; 6: 29258
  • 80 Huang A, Zhao X, Yang XR. , et al. Circumventing intratumoral heterogeneity to identify potential therapeutic targets in hepatocellular carcinoma. J Hepatol 2017; 67 (02) 293-301
  • 81 Hou Y, Guo H, Cao C. , et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res 2016; 26 (03) 304-319
  • 82 Chung W, Eum HH, Lee HO. , et al. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat Commun 2017; 8: 15081
  • 83 Li H, Courtois ET, Sengupta D. , et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet 2017; 49 (05) 708-718
  • 84 Maley CC, Galipeau PC, Finley JC. , et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet 2006; 38 (04) 468-473