Osteologie 2016; 25(02): 83-91
DOI: 10.1055/s-0037-1619007
Osteozyt: Funktion & Morphologie
Schattauer GmbH

Synchrotron-Nano-Tomografie mit Phasenkontrast

Eine neue Dimension in der Analyse von Osteozytenlakunen, Kanalikuli und der extrazellulären KnochenmatrixSynchrotron radiation nanotomography with phase contrastA new dimension in the analysis of the osteocyte lacuno-canalicuar network and the extracellular bone matrix
B. Hesse
1   European Synchrotron Radiation Facility, Grenoble, Frankreich
,
P. Varga
2   AO Research Institute Davos, Davos, Schweitz
,
S. Schrof
3   Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
,
N. Männicke
3   Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
,
A. Pacureanu
1   European Synchrotron Radiation Facility, Grenoble, Frankreich
,
M. Langer
1   European Synchrotron Radiation Facility, Grenoble, Frankreich
,
H. Suhonen
1   European Synchrotron Radiation Facility, Grenoble, Frankreich
,
P. Maurer
5   Klinik für Mund-, Kieferund Gesichtschirurgie, Klinikum Bremerhaven-Reinkenheide, Bremerhaven, Deutschland
,
P. Cloetens
1   European Synchrotron Radiation Facility, Grenoble, Frankreich
,
F. Peyrin
4   Université de Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Lyon, Frankreich
,
K. Raum
3   Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Berlin, Deutschland
› Author Affiliations
Further Information

Publication History

eingereicht: 25 February 2016

angenommen: 06 March 2016

Publication Date:
22 December 2017 (online)

Zusammenfassung

Gesunder humaner Knochen unterliegt einem permanenten Umbau, um sich den mechanischen Anforderungen anzupassen, Mikrofrakturen zu reparieren und das Mineralgleichgewicht zu erhalten. Der Umbauprozess der extrazellulären Matrix wird durch Osteoblasten und Osteoklasten realisiert. Eine bedeutende Rolle bei der Regulierung der Osteoklasten- und Osteoblastenaktivität wird den Osteozyten zugesprochen, welche in einem komplexen Netzwerk von Zelllakunen und Kanalikuli die extrazelluläre Matrix durchsetzen. Auf Phasenkontrast basierende hochauflösende Nano-Computertomografie erlaubt erstmals, sowohl das Zellnetzwerk als auch die direkt angrenzende mineralisierte Matrix in Untersuchungsvolumen, die hinsichtlich ihrer Größe als repräsentativ angesehen werden können, im nativen Zustand (nicht demineralisiert, nicht eingebettet) zu untersuchen.

Summary

Healthy human bone tissue undergoes a continuous remodeling process to i) repair microdamages, ii) adapt to mechanical boundary conditions, and iii) maintain a constant serum calcium level. Bone remodeling is realized by specialized bone synthesizing and resorbing cells, i. e. osteoblasts and osteoclasts, respectively. Osteocytes play an important role in the regulation of osteoblast and osteoclast activities. Osteocytes are embedded in the extracellular matrix in a complex porous lacunar-canalicular network (LCN). Recently developed high-fidelity phase-contrast nanotomography with synchrotron radiation x-ray sources enabled for the first time the simultaneous assessment of both, LCN and the adjacent extracellular mineralized matrix in close-to-native sample conditions.

 
  • Literatur

  • 1 Raum K. Microelastic imaging of bone. Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on 2008; 55 (07) 1417-1431.
  • 2 Pacureanu A, Langer M, Boller E. et al. Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup. Medical physics 2012; 39 (04) 2229-2238.
  • 3 Hesse B, Varga P, Langer M. et al. Canalicular network morphology is the major determinant of the spatial distribution of mass density in human bone tissue: evidence by means of synchrotron radiation phase-contrast nano-CT. Journal of bone and mineral research 2015; 30 (02) 346-356.
  • 4 Marotti G, Ferretti M, Remaggi F, Palumbo C. Quantitative evaluation on osteocyte canalicular density in human secondary osteons. Bone 1995; 16 (01) 125-128.
  • 5 Bonewald LF. The amazing osteocyte. Journal of bone and mineral research 2011; 26 (02) 229-238.
  • 6 Klein-Nulend J, Bakker AD, Bacabac RG. et al. Mechanosensation and transduction in osteocytes. Bone 2013; 54 (02) 182-190.
  • 7 Schneider P, Meier M, Wepf R, Muller R. Towards quantitative 3D imaging of the osteocyte lacunocanalicular network. Bone 2010; 47 (05) 848-858.
  • 8 Zhou X, Novotny JE, Wang L. Anatomic variations of the lacunar-canalicular system influence solute transport in bone. Bone 2009; 45 (04) 704-710.
  • 9 Wang N, Butler JP, Ingber DE. Mechanotransduction across the Cell-Surface and through the Cytoskeleton. Science 1993; 260 (5111): 1124-1127.
  • 10 Anderson EJ, Knothe MLTate. Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nanomicroscale stresses imparted by fluid drag on osteocytes. Journal of biomechanics 2008; 41 (08) 1736-1746.
  • 11 Knothe MLTate. “Whither flows the fluid in bone?” An osteocyte’s perspective. Journal of biomechanics 2003; 36 (10) 1409-1424.
  • 12 Knothe MLTate. Top down and bottom up engineering of bone. Journal of biomechanics 2011; 44 (02) 304-312.
  • 13 Mullender MG, van der Meer DD, Huiskes R, Lips P. Osteocyte density changes in aging and osteoporosis. Bone 1996; 18 (02) 109-113.
  • 14 Qiu S, Rao DS, Palnitkar S, Parfitt AM. Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. Journal of bone and mineral research 2003; 18 (09) 1657-1663.
  • 15 Mullender MG, Tan SD, Vico L. et al. Differences in osteocyte density and bone histomorphometry between men and women and between healthy and osteoporotic subjects. Calcified tissue international 2005; 77 (05) 291-296.
  • 16 van Hove RP, Nolte PA, Vatsa A. et al. Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density – is there a role for mechanosensing?. Bone 2009; 45 (02) 321-329.
  • 17 Kerschnitzki M, Wagermaier W, Roschger P. et al. The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. Journal of structural biology 2011; 173 (02) 303-311.
  • 18 Qing H, Bonewald LF. Osteocyte remodeling of the perilacunar and pericanalicular matrix. International journal of oral science 2009; 01 (02) 59-65.
  • 19 Talmage RV, Mobley HT. Calcium homeostasis: reassessment of the actions of parathyroid hormone. General and comparative endocrinology 2008; 156 (01) 1-8.
  • 20 Atkins GJ, Findlay DM. Osteocyte regulation of bone mineral: a little give and take. Osteoporosis International 2012; 23 (08) 2067-2079.
  • 21 Belanger LF, Belanger C, Semba T. Technical approaches leading to the concept of osteocytic osteolysis. Clinical orthopaedics and related research 1967; 54: 187-916.
  • 22 Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone 2009; 44 (01) 11-16.
  • 23 Verbruggen SW, Vaughan TJ, McNamara LM. Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. Journal of the Royal Society, Interface/the Royal Society 2012; 09 (75) 2735-2744.
  • 24 Centonze VE, White JG. Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophysical journal 1998; 75 (04) 2015-2024.
  • 25 Dierolf M, Menzel A, Thibault P. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 2010; 467 (7314): 436-439.
  • 26 Pacureanu A, Langer M, Boller E. et al. Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup. Medical physics 2012; 39 (04) 2229-2238.
  • 27 Resch H. Hochauflösende- und Mikro-CT in der Wiener Osteologie. Osteologie 2013; 22 (01) 5.
  • 28 Weber GW, Benazzi S, Kullmer O. [µCT-Applications in Biological Anthropology]. Osteologie 2013; 22 (01) 18-24.
  • 29 Schneider P, Meier M, Wepf R, Muller R. Serial FIB/SEM imaging for quantitative 3D assessment of the osteocyte lacuno-canalicular network. Bone 2011; 49 (02) 304-311.
  • 30 Langer M, Pacureanu A, Suhonen H. et al. X-ray phase nanotomography resolves the 3D human bone ultrastructure. PloS one 2012; 07 (08) e35691.
  • 31 Varga P, Pacureanu A, Langer M. et al. Investigation of the 3D orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography. Acta biomaterialia 2013; 09 (09) 8118-8127.
  • 32 Gluer CC, Krause M, Museyko O. et al. New horizons for the in vivo assessment of major aspects of bone quality Microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium. Osteologie 2013; 22 (03) 223-233.
  • 33 Pahr DH, Zysset PK. [Finite element simulations in clinical osteoporosis research.]. Osteologie 2013; 22 (01) 7-12.
  • 34 Raum K, Leguerney I, Chandelier F. et al. Sitematched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation µCT. Physics in medicine and biology 2006; 51 (03) 733.
  • 35 Nuzzo S, Peyrin F, Cloetens P. et al. Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation micro - tomography. Medical physics 2002; 29 (11) 2672-2681.
  • 36 Carter Y, Thomas CD, Clement JG, Cooper DM. Femoral osteocyte lacunar density, volume and morphology in women across the lifespan. Journal of structural biology 2013; 183 (03) 519-526.
  • 37 Mader KS, Schneider P, Muller R, Stampanoni M. A quantitative framework for the 3D characterization of the osteocyte lacunar system. Bone 2013; 57 (01) 142-154.
  • 38 Langer M, Peyrin F. 3D X-ray ultra-microscopy of bone tissue. Osteoporosis International 2015; 27 (02) 441-455.
  • 39 Hesse B, Langer M, Varga P. et al. Alterations of mass density and 3D osteocyte lacunar properties in bisphosphonate-related osteonecrotic human jaw bone, a synchrotron microCT study. PloS one 2014; 09 (02) e88481.
  • 40 Langer M, Cloetens P, Guigay JP, Peyrin F. Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography. Medical physics 2008; 35 (10) 4556-4566.
  • 41 Langer M, Cloetens P, Hesse B. et al. Priors for X-ray in-line phase tomography of heterogeneous objects. Philosophical transactions Series A, Mathematical, physical, and engineering sciences 2014; 372 (2010): 20130129.
  • 42 Giraud-Guille MM. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcified tissue international 1988; 42 (03) 167-180.
  • 43 Weiner S, Wagner HD. The material bone: Structure-Mechanical Function Relations. Annual Review of Materials Science 1998; 28 (01) 271-298.
  • 44 Varga P, Weber L, Hesse B, Langer M. Synchrotron X-ray phase nanotomography for bone tissue characterisation. Book: Nanoscience and Nanotechnology. 2016 05. [in press]..
  • 45 Reznikov N, Almany-Magal R, Shahar R, Weiner S. Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures. Bone 2013; 52 (02) 676-683.
  • 46 Reznikov N, Shahar R, Weiner S. Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization. Bone 2014; 59: 93-104.
  • 47 Varga P, Hesse B, Langer M. et al. Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis. Biomechanics and modeling in mechanobiology 2015; 14 (02) 267-282.
  • 48 McNamara LM, Majeska RJ, Weinbaum S. et al. Attachment of osteocyte cell processes to the bone matrix. The Anatomical record 2009; 292 (03) 355-363.
  • 49 Kamioka H, Kameo Y, Imai Y. et al. Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integr Biol 2012; 04 (10) 1198-1206.
  • 50 Burr DB, Milgrom C, Fyhrie D. et al. In vivo measurement of human tibial strains during vigorous activity. Bone 1996; 18 (05) 405-410.
  • 51 Yang PF, Bruggemann GP, Rittweger J. What do we currently know from in vivo bone strain measurements in humans?. J Musculoskelet Neuronal Interact 2011; 11 (01) 8-20.
  • 52 You J, Yellowley CE, Donahue HJ. et al. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 2000; 122 (04) 387-393.
  • 53 Varga P, Weber L, Hesse B, Langer M. Synchrotron X-Ray Phase Nano-tomography for Bone Tissue Characterisation. In: X-ray and Neutron Techniques for Nanomaterials Characterization. Berlin, Heidelberg: Springer; 2016. [in press]..