Subscribe to RSS
DOI: 10.1055/s-0037-1617906
Diagnostik und Therapie der primären ziliären Dyskinesie
Diagnosis and therapy of primary ciliary dyskinesiaPublication History
Eingegangen:
31 January 2006
angenommen:
07 February 2006
Publication Date:
11 January 2018 (online)

Zusammenfassung
Die primäre ziliäre Dyskinesie (PCD) ist eine klinisch und genetisch heterogene hereditäre Erkrankung. Der komplexe Phänotyp der Erkrankung erklärt sich durch angeborene Dysfunktionen respiratorischer Flimmerhärchen (Zilien), embryonaler Zilien und von Spermienschwänzen. Aufgrund einer verminderten mukoziliären Reinigung der Atemwege entwickeln Betroffene rezidivierende Infektionen der oberen und unteren Atemwege. Embryonale Ziliendefekte sind dafür verantwortlich, dass die Hälfte der PCD-Patienten einen Situs inversus (Kartagener-Syndrom) aufgrund einer zufälligen Anordnung der Links/Rechts-Körperasymmetrie aufweist. Bei betroffenen Männern verursacht eine Fehlfunktion der Spermienschwänze oft eine verminderte Fertilität (∼60%). Bei klinischem Verdacht kann die Diagnose durch Elektronenmikroskopie, hoch auflösende Immunfluoreszenzmikroskopie, und/oder direktmikroskopische Evaluation des Zilienschlages bestätigt werden. Kürzlich konnten Mutationen bei rezessiv vererbter PCD in den Genen DNAI1, DNAH5, DNAH11 nachgewiesen werden. Selten finden sich RPGR-Mutationen bei Jungen mit X-chromosomal rezessiver PCD und Retinitis pigmentosa. Das aktuelle therapeutische Konzept wird vorgestellt.
Summary
Primary ciliary dyskinesia (PCD) is a phenotypically and genetically heterogeneous genetic disorder. The disease phenotype results from defects of respiratory cilia, sperm tails and the cilia of the embryonic node. Recurrent infections of the upper and lower airways are caused defective mucociliary clearance. Early diagnosis is important prevent or delay permanent lung damage (bronchiectasis) that might even progress to chronic respiratory failure. Male infertility due to sperm tail dysmotility is often observed. Randomization of left/right body asymmetry is responsible for situs inversus (Kartagener’s syndrome) in half of affected individuals. As a screening test nasal nitric oxide measurement is used, but only available in few specialized centers. Establishment of diagnosis currently relies on electron microscopy, high-resolution immunofluorescence analysis, and/or direct evaluation of ciliary beat by light microscopy. Recently mutations in the three genes DNAI1, DNAH5 and DNAH11 that all encode for dynein proteins have been linked to recessive PCD. In addition mutations in the RPGR gene located on the X chromosome have been identified in males with retinitis pigmentosa and PCD.
-
Literatur
- 1 Afzelius BA. A human syndrome caused by immotile cilia. Science 1976; 193: 317-9.
- 2 Afzelius BA, Mossberg B. Immotile Cilia Syndrome (Primary Ciliary Dyskinesia) including Kartagener syndrome. In Scriver CR, Beaudet AL, Sly WS. (eds). The Metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 1995: 3943-54.
- 3 Bartoloni L, Blouin JL, Pan Y. et al. Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proceedings of the National Academy of Sciences USA 2002; 9: 282-6.
- 4 Blouin JL, Meeks M, Radhakrishna U. et al. Primary ciliary dyskinesia: a genome-wide linkage analysis reveals extensive locus heterogeneity. European Journal of Human Genetics 2000; 9-18.
- 5 Bush A, Cole P, Hariri M. et al. Primary ciliary dyskinesia: diagnosis and standards of care. European Respiratory Journal 1998; 2: 982-8.
- 6 Csoma Z, Bush A, Wilson NM. et al. Nitric oxide metabolites are not reduced in exhaled breath condensate of patients with primary ciliary dyskinesia. Chest 2003; 124 (02) 633-8.
- 7 Dry KL, Manson FD, Lennon A. et al. Identification of a 5’ splice site mutation in the RPGR gene in a family with X-linked retinitis pigmentosa (RP3). Human Mutation 1999; 13: 141-5.
- 8 El Zein L, Omran H, Bouvagnet P. Lateralization defects and ciliary dyskinesia: lessons from algae. Trends in Genetics 2003; 19: 162-7.
- 9 Fliegauf M, Olbrich H, Horvath J. et al. Mis-localization of DNAH5 and DNAH9 in respiratory cells from primary ciliary dyskinesia patients. American Journal of Respiratory and Critical Care Medicine 2005; 171: 1343-9.
- 10 Greenstone MA, Stanley P, Cole P, Mackay I. Upper airway manifestations of primary ciliary dyskinesia. Journal of Laryngology & Otology 1985; 99: 985-91.
- 11 Guichard C, Harricane MC, Lafitte JJ. et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). American Journal of Human Genetics 2001; 68: 1030-5.
- 12 Hadfield PJ, Rowe-Jones JM, Bush A, Mackay IS. Treatment of otitis media with effusion in children with primary ciliary dyskinesia. Clinical Otolaryngology 1997; 22: 302-6.
- 13 Hou X, Mrug M, Yoder BK. et al. Cystin, a novel cilia-associated protein, is disrupted in the cpk mouse model of polycystic kidney disease. The Journal of clinical Investigation 2002; 109: 533-40.
- 14 Iannaccone A, Breuer DK, Wang XF. et al. Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. Journal of Medical Genetics 2003; 40: e118.
- 15 Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of cilia in development and disease. Human Molecular Genetics 2003; 12: R27-35.
- 16 Ibanez-Tallon I, Pagenstecher A, Fliegauf M. et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Human Molecular Genetics 2004; 13: 2133-41.
- 17 Jeganathan D, Chodhari R, Meeks M. et al. Loci for primary ciliary dyskinesia map to chromosome 16p12.1–12.2 and 15q13.1–15.1 in Faroe Islands and Israeli Druze genetic isolates. Journal of Medical Genetics 2004; 41: 233-40.
- 18 Karadag B, James AJ, Gultekin E. et al. Nasal and lower airway level of nitric oxide in children with primary ciliary dyskinesia. European Respiratory Journal 1999; 13: 1402-5.
- 19 Meeks M, Walne A, Spiden S. et al. A locus for primary ciliary dyskinesia maps to chromosome 19q. Journal of Medical Genetics 2000; 37: 241-4.
- 20 Nonaka S, Tanaka Y, Okada Y. et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998; 95: 829-37.
- 21 Olbrich H, Häffner K, Kispert A. et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nature Genetics 2002; 30: 143-4.
- 22 Olbrich H, Horvath J, Fekete A. et al. Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatric Research. (in press).
- 23 Omran H, Häffner K, Völkel A. et al. Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. American Journal of Respiratory Cell and Molecular Biology. 2000; 23: 696-702.
- 24 Pedersen M, Stafanger G. Bronchopulmonary symptoms in primary ciliary dyskinesia. A clinical study of 27 patients. European Journal of Respiratory Diseases 1983; 127 (Suppl) 118-28.
- 25 Pennarun G, Escudier E, Chapelin C. et al. Lossof-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. American Journal of Human Genetics 1999; 65: 1508-19.
- 26 Van Dorp DB, Wright AF, Carothers AD, Bleeker-Wagemakers EM. A family with RP3 type of X-linked retinitis pigmentosa: an association with ciliary abnormalities. Human Genetics 1992; 88: 331-4.
- 27 Zariwala M, Kennedy MP, Leigh MW. et al. Mutation analysis of DNAI1 in patients with primary ciliary dyskinesia (PCD). American Journal of Human Genetics 2004; 75 (Suppl): A2497.
- 28 Zito I, Downes SM, Patel RJ. et al. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. Journal of Medical Genetics 2003; 40: 609-15.