Hamostaseologie 2016; 36(S 02): S34-S37
DOI: 10.1055/s-0037-1616971
Original article
Schattauer GmbH

A novel missense mutation in the FGB gene (p.Gly302Arg) leading to afibrinogenemia

Predicted structure and function consequencesEine neue Afibrinogenämie verursachende Missense-Mutation des FGB-Gens (p.Gly302Arg)Vorhersage der Konsequenzen für Struktur und Funktion
V. Ivaškevičius
1   Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald
,
H. Rühl
1   Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald
,
G. Detarsio
2   Institute for Clinical Immunology and Transfusion Medicine, University of Giessen
,
A. Biswas
1   Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald
,
S. Gupta
1   Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald
,
M. Davoli
4   Haemophilia Foundation Rosario, Argentina
,
A. Quartara
3   Hematology Department, Hospital Provincial del Centenario, Rosario, Argentina
,
S. Pérez
2   Institute for Clinical Immunology and Transfusion Medicine, University of Giessen
,
M. Raviola
2   Institute for Clinical Immunology and Transfusion Medicine, University of Giessen
,
J. Oldenburg
1   Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald
› Author Affiliations
Further Information

Publication History

received: 17 March 2016

accepted in revised form: 20 July 2016

Publication Date:
30 December 2017 (online)

Summary

Afibrinogenemia represents the rarest form of fibrinogen deficiency. Causative missense mutations occur rarely and may improve the understanding of fibrinogen structure and function. Patients and methods: The propositus was a 26-year-old Argentinian with afibrinogenemia. FGA, FGB and FGG exons and flanking regions were screened by sequencing and the mutant protein was analyzed in silico. Results: A novel missense mutation in the FGB gene (Bbeta Gly272Arg, p.Gly302Arg) was identified. In silico analysis revealed its location in a highly conserved region, which preserves the core fold of the C-terminal beta-chain and is important for proper secretion. A substitution by a positively charged large Arg residue in this area would most likely disturb the core fold by additional interactions with adjacent residues (p.Asp291, p.Asp297, p.Asp311), or by forming of non-native interactions with other proteins, thereby hindering the action of molecular chaperones. Both alternatives would disturb the regular secretion of the beta-chain. Conclusions: The novel mis-sense mutation in the FGB gene causes afibrinogenemia most probably by affecting the secretion of the fibrinogen beta-chain.

Zusammenfassung

Afibrinogenämie ist die seltenste Form des angeborenen Fibrinogenmangels. Die seltenen ursächlichen Missense-Mutationen können unser Verständnis von Struktur und Funktions des Fibrinogens erweitern. Patienten und Methoden: Propositus war ein 26-jähriger Argentinier mit Afibrinogenämie. Die Exons der Gene FGA, FGB, FGG und flankierende Regionen wurden sequenziert und das mutierte Protein kristallographisch analysiert. Ergebnisse: Eine bisher unbekannte Missense-Mutation im FGB-Gen (Bbeta Gly272Arg, p.Gly302Arg) wurde nachgewiesen und durch kristallographische Analyse ihre Lokalisation in einer hochkonservierten Region identifiziert. Diese schützt die zentrale Faltung der C-terminalen beta-Kette und ist für deren Sekretion wichtig. Ein Austausch mit einem stark positiv geladenen Arginin-Rest würde hier wahrscheinlich die zentrale Faltung durch Wechselwirkung mit benachbarten Resten (p.Asp291, p.Asp297, p.Asp311) oder Behinderung von Chaperonen stören. In beiden Fällen wäre die normale Sekretion der beta-Kette gestört. Schlussfolgerung: Die bisher unbekannte Missense-Mutation im FGB-Gen verursacht Afibrino genämie, höchstwahrscheinlich durch Störung der Sekretion der beta-Kette.

 
  • References

  • 1 de Moerloose P, Casini A, Neerman-Arbez M. Congenital fibrinogen disorders: an update. Semin Thromb Hemost 2013; 39: 585-595.
  • 2 Tennent GA, Brennan SO, Stangou AJ. et al. Human plasma fibrinogen is synthesized in the liver. Blood 2007; 109: 1971-1974.
  • 3 Mosesson MW. Fibrinogen and fibrin structure and functions. J Thromb Haemost 2005; 3: 1894-1904.
  • 4 Kant JA, Fornace Jr AJ, Saxe D. et al. Evolution and organization of the fibrinogen locus on chromo-some 4. Proc Natl Acad Sci USA 1985; 82: 2344-2348.
  • 5 Casini A, Lukowski S, Quintard VL. et al. FGB mutations leading to congenital quantitative fibrinogen deficiencies. Thromb Res 2014; 133: 868-874.
  • 6 Ivaskevicius V, Jusciute E, Steffens M. et al. gammaAla82Gly represents a common fibrinogen gamma-chain variant in Caucasians. Blood Coagul Fibrinolysis 2005; 16: 205-208.
  • 7 Kollman JM, Pandi L, Sawaya MR. et al. Crystal structure of human fibrinogen. Biochemistry. 2009; 48: 3877-3886.
  • 8 Krieger E., & Vriend G.. YASARA View – molecular graphics for all devices – from smartphones to workstations. Bioinformatics 2014; 30: 2981-2982.
  • 9 Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002; 30: 3894-3900.
  • 10 Sunyaev S, Ramensky V, Bork P. Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet 2000; 16: 198-200.
  • 11 Sunyaev S, Ramensky V, Koch I. et al. Prediction of deleterious human alleles. Hum Mol Genet 2001; 10: 591-597.
  • 12 Vu D, Di Sanza C, Caille D. et al. Quality control of fibrinogen secretion in the molecular pathogenesis of congenital afibrinogenemia. Hum Mol Genet 2005; 14: 3271-3280.
  • 13 Vu D, Neerman-Arbez M. Molecular mechanisms accounting for fibrinogen deficiency. J Thromb Haemost 2007; 5: 125-131.