Hamostaseologie 2008; 28(01/02): 85-88
DOI: 10.1055/s-0037-1616927
Original Article
Schattauer GmbH

Protective effects of soy-isoflavones in cardiovascular disease

Identification of molecular targetsProtektive Effekte von Isoflavonoiden bei kardiovaskulären ErkrankungenIdentifizierung von Zielproteinen
U. Wenzel
1   Molecular Nutrition Research, Giessen, Freising-Weihenstephan, Germany
,
D. Fuchs
2   Molecular Nutrition Unit, Technical University of Munich, Freising-Weihenstephan, Germany
,
H. Daniel
2   Molecular Nutrition Unit, Technical University of Munich, Freising-Weihenstephan, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
29 December 2017 (online)

Summary

Epidemiological studies indicate that the consumption of soy-containing food may prevent or slow-down the development of cardiovascular disease. In endothelial cells application of a soy extract or a combination of the most abundant soy isoflavones genistein and daidzein both inhibited apoptosis, a driving force in atherosclerosis development, when applied in combination with oxidized LDL or homocysteine. Proteome analysis revealed that the stressorinduced alteration of protein expression profile was reversed by the soy extract or the genistein/daidzein mixture. Only few protein entities that could be functionally linked to mitochondrial dysfunction were regulated in common by both application forms of isoflavones. A dietary intervention with isoflavone-enriched soy extract in postmenopausal women, who generally show strongly increased cardiovascular risk due to diminished estrogen production, led to significant alterations in the steady state levels of proteins from mononuclear blood cells. The proteins identified by proteome analysis revealed that soy isoflavones may increase the anti-inflammatory response in blood mononuclear cells thereby contributing to the atherosclerosispreventive activities of a soy-rich diet. Conclusion: By proteome analysis protein targets were identified in vitro in endothelial cells that respond to soy isoflavones and that may decipher molecular mechanisms through which soy products exert their protective effects in the vasculature.

Zusammenfassung

Epidemiologische Studien weisen auf protektive Effekte einer sojareichen Ernährung gegenüber der Entstehung kardiovaskulärer Erkrankungen hin. In Endothelzellen bewirkte ein Sojaextrakt und auch die Kombination der beiden quantitativ in Soja bedeutendsten Isoflavone Genistein und Daidzein eine Inhibierung der durch die endothelialen Stressoren Homocystein und oxidiertes LDL induzierten Apoptose. Die Analyse des Proteoms zeigte, dass einige der durch endotheliale Stressoren verursachten Veränderungen in den Spiegeln zellulärer Proteine durch die Soja-Isoflavonoide oder den Extrakt aufgehoben wurden. Proteine, deren Stressor-bedingte Veränderung sowohl durch die isolierten Isoflavonoide als auch den Extrakt verhindert wurden, konnten funktionell mitochondrialen Prozessen zugeordnet werden. Die Intervention mit Isoflavonoid-angereicherten Sojaextrakten in postmenopausalen Frauen, die generell einen deutlichen Anstieg des Risikos kardiovaskulärer Erkrankungen aufgrund verminderter Östrogenproduktion aufweisen, belegte die signifikante Veränderung der Spiegel spezifischer Proteine aus mononukleären Zellen des peripheren Blutes. Die Identifizierung dieser Proteine legt nahe, dass die Isoflavonoide die antiinflammatorische Antwort von Leukozyten erhöhen. Schlussfolgerung: Die Proteomanalyse führte zur Identifizierung zellulärer Zielproteine in endothelialen Zellen in vitro und in Leukozyten in vivo. Diese Antworten helfen, molekulare Mechanismen zu beschreiben, durch die Sojaprodukte günstige Effekte in der Prophylaxe kardiovaskulärer Erkrankungen entfalten.

 
  • References

  • 1 Yutani C, Imakita M, Ishibashi-Ueda H. et al. Coronary atherosclerosis and interventions: pathological sequences and restenosis. Pathol Int 1999; 49: 273-290.
  • 2 Anthony MS, Clarkson TB, Williams JK. Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am J Clin Nutr 1998; 68: 1390S-1393S.
  • 3 Zhang X, Shu XO, Gao YT. et al. Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr 2003; 133: 2874-2878.
  • 4 Merz-Demlow BE, Duncan AM, Wangen KE. et al. Soy isoflavones improve plasma lipids in normocholesterolemic, premenopausal women. Am J Clin Nutr 2000; 71: 1462-1469.
  • 5 Clarkson TB. Soy, soy phytoestrogens and cardiovascular disease. J Nutr 2002; 132: 566S-569S.
  • 6 Cassidy A, Griffin B. Phyto-oestrogens: a potential role in the prevention of CHD?. Proc Nutr Soc 1999; 58: 193-199.
  • 7 Jenkins DJ, Kendall CW, Jackson CJ. et al. Effects of high- and low-isoflavone soyfoods on blood lipids, oxidized LDL, homocysteine, and blood pressure in hyperlipidemic men and women. Am J Clin Nutr 2002; 76: 365-372.
  • 8 Kapiotis S, Hermann M, Held I. et al. Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler. Thromb. Vasc Biol 1997; 17: 2868-2874.
  • 9 Steinberg FM, Guthrie NL, Villablanca AC. et al. Soy protein with isoflavones has favorable effects on endothelial function that are independent of lipid and antioxidant effects in healthy postmenopausal women. Am J Clin Nutr 2003; 78: 123-130.
  • 10 Takano-Ishikawa Y, Goto M, Yamaki K. Inhibitory effects of several flavonoids on E-selectin expression on human umbilical vein endothelial cells stimulated by tumor necrosis factor-alpha. Phytother Res 2003; 17: 1224-1227.
  • 11 Rimbach G, Weinberg PD, de Pascual-Teresa S. et al. Sulfation of genistein alters its antioxidant properties and its effect on platelet aggregation and monocyte and endothelial function. Biochim Biophys Acta 2004; 1670: 229-237.
  • 12 Yen GC, Lai HH. Inhibition of reactive nitrogen species effects in vitro and in vivo by isoflavones and soy-based food extracts. J Agric Food Chem 2003; 51: 7892-7900.
  • 13 Gottstein N, Ewins BA, Eccleston C. et al. Effect of genistein and daidzein on platelet aggregation and monocyte and endothelial function. Br J Nutr 2003; 89: 607-616.
  • 14 Rimbach G, Boesch-Saadatmandi C, Frank J. et al. Dietary isoflavones in the prevention of cardiovascular disease – A molecular perspective. Food Chem Toxicol. 2007 in press.
  • 15 Izumi T, Piskula MK, Osawa S. et al. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J Nutr 2000; 130: 1695-1699.
  • 16 Ambra R, Rimbach G, de Pascual Teresa S. et al. Genistein affects the expression of genes involved in blood pressure regulation and angiogenesis in primary human endothelial cells. Nutr Metab Cardiovasc Dis 2006; 16: 35-43.
  • 17 Fuchs D, de Pascual-Teresa S, Rimbach G. et al. Proteome analysis for identification of target proteins of genistein in primary human endothelial cells stressed with oxidized LDL or homocysteine. Eur J Nutr 2005; 44: 95-104.
  • 18 Fuchs D, Erhard P, Turner R. et al. Genistein reverses changes of the proteome induced by oxidized- LDL in EA.hy 926 human endothelial cells. J Proteome Res 2005; 4: 369-376.
  • 19 Bombeli T, Karsan A, Tait JF. et al. Apoptotic vascular endothelial cells become procoagulant. Blood 1997; 89: 2429-2442.
  • 20 Huber J, Vales A, Mitulovic G. et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol 2002; 22: 101-107.
  • 21 Fuchs D, Erhard P, Rimbach G. et al. Genistein blocks homocysteine-induced alterations in the proteome of human endothelial cells. Proteomics 2005; 5: 2808-2818.
  • 22 Shao LE, Tanaka T, Gribi R. et al. Thioredoxin-related regulation of NO/NOS activities. Ann NY Acad Sci 2002; 962: 140-150.
  • 23 Hintze KJ, Wald K, Finley JW. Phytochemicals in broccoli transcriptionally induce thioredoxin reductase. J Agric Food Chem 2005; 53: 5535-5540.
  • 24 Hosoya T, Maruyama A, Kang MI. et al. Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J Biol Chem 2005; 280: 27244-27250.
  • 25 Fuchs D, Dirscherl B, Schroot JH. et al. Proteome analysis suggests that mitochondrial dysfunction in stressed endothelial cells is reversed by a soy extract and isolated isoflavones. (unpublished).
  • 26 Gorog P, Pearson JD. Surface determinants of low density lipoprotein uptake by endothelial cells. Atherosclerosis 1984; 53: 21-29.
  • 27 Zmijewski JW, Moellering DR, Le Goffe C. et al. Oxidized LDL induces mitochondrially associated reactive oxygen/nitrogen species formation in endothelial cells. Am J Physiol Heart Circ Physiol 2005; 289: H852-861.
  • 28 Kotamraju S, Hogg N, Joseph J. et al. Inhibition of oxidized low-density lipoprotein-induced apoptosis in endothelial cells by nitric oxide. Peroxyl radical scavenging as an antiapoptotic mechanism. J Biol Chem 2001; 276: 17316-17323.
  • 29 Senoo-Matsuda N, Yasuda K, Tsuda M. et al. A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 2001; 276: 41553-41558.
  • 30 Hammes HP, Du X, Edelstein D. et al. Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med 2003; 9: 294-299.
  • 31 Fuchs D, Vafeiadou K, Hall WL. et al. Proteomic biomarkers of peripheral blood mononuclear cells obtained from postmenopausal women undergoing an intervention with soy isoflavones. Am J Clin Nutr 2007; 86: 1369-1375.
  • 32 Meng X, Harken AH. The interaction between Hsp70 and TNF-alpha expression: a novel mechanism for protection of the myocardium against post-injury depression. Shock 2002; 17: 345-353.
  • 33 Delogu G, Signore M, Mechelli A. et al. Heat shock proteins and their role in heart injury. Curr Opin Crit Care 2002; 8: 411-416.
  • 34 Pockley AG, Georgiades A, Thulin T. et al. Serum heat shock protein 70 levels predict the development of atherosclerosis in subjects with established hypertension. Hypertension 2003; 42: 235-238.
  • 35 Zhu J, Quyyumi AA, Wu H. et al. Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb Vasc Biol 2003; 23: 1055-1059.
  • 36 Mustelin T, Vang T, Bottini N. Protein tyrosine phosphatases and the immune response. Nat Rev Immunol 2005; 5: 43-57.
  • 37 Kannel WB. Overview of hemostatic factors involved in atherosclerotic cardiovascular disease. Lipids 2005; 40: 1215-1220.
  • 38 Lopez-Alemany R, Longstaff C, Hawley S. et al. Inhibition of cell surface mediated plasminogen activation by a monoclonal antibody against alpha-Enolase. Am J Hematol 2003; 72: 234-242.
  • 39 Moiseeva EP, Williams B, Goodall AH. et al. Galectin- 1 interacts with beta-1 subunit of integrin. Biochem Biophys Res Commun 2003; 310: 1010-1016.