Thromb Haemost 2000; 84(03): 436-441
DOI: 10.1055/s-0037-1614041
Commentary
Schattauer GmbH

Phenotype-genotype Correlation in CD36 Deficiency Types I and II

Hidekatsu Yanai
1   From the Department of Laboratory Medicine, Sapporo, Japan
2   Department of Pediatrics, Sapporo, Japan
,
Hitoshi Chiba
1   From the Department of Laboratory Medicine, Sapporo, Japan
,
Hironobu Fujiwara
1   From the Department of Laboratory Medicine, Sapporo, Japan
2   Department of Pediatrics, Sapporo, Japan
,
Mie Morimoto
4   College of Medical Technology, Hokkaido University, Sapporo, Japan
,
Keisuke Abe
3   Internal Medicine III, Hokkaido University School of Medicine, Sapporo, Japan
,
Shigeru Yoshida
1   From the Department of Laboratory Medicine, Sapporo, Japan
,
Yukihiro Takahashi
1   From the Department of Laboratory Medicine, Sapporo, Japan
2   Department of Pediatrics, Sapporo, Japan
,
Hirotoshi Fuda
1   From the Department of Laboratory Medicine, Sapporo, Japan
,
Shu-Ping Hui
1   From the Department of Laboratory Medicine, Sapporo, Japan
2   Department of Pediatrics, Sapporo, Japan
,
Harukuni Akita
1   From the Department of Laboratory Medicine, Sapporo, Japan
,
Kunihiko Kobayashi
2   Department of Pediatrics, Sapporo, Japan
,
Kazuhiko Matsuno
4   College of Medical Technology, Hokkaido University, Sapporo, Japan
› Author Affiliations
We thank Chiaki Watanabe, Koji Hayasaka, Hideki Shimamura, and Ayano Sasaki for technical help. We obtained consent from all volunteers. This work was supported by Grant-in-Aid No. 09208202, 10115202, and 09672345 for Scientific Research from Ministry of Education, Science, and Culture, Japan. S.-P. Hui was supported by Postdoctoral Fellowship for Foreign Researchers from Japan Society for the Promotion of Science.
Further Information

Publication History

Received 21 January 2000

Accepted after resubmission 23 March 2000

Publication Date:
14 December 2017 (online)

Summary

CD36 deficiency was studied with attention to the phenotypegenotype relationship. The diagnosis of CD36 deficiency was made when CD36 was negative on platelets (type II) or on both platelets and monocytes (type I). Among 827 apparently healthy Japanese volunteers, the type I and II deficiencies were found in 8 (1.0%) and 48 (5.8%), respectively. The T for C substitution at nt478 for Pro90Ser and the insertion of A at nt1159 constituted the major causes of type I and II deficiencies. The dinucleotide deletion at nt539 had a minor role. In two family studies, we found a previously unreported polymorphic site in the 5’-proximal flanking region and the 3’-untranslated region. Including these new polymorphisms, DNA sequence other than the three known mutations affecting CD36 expression was not observed in the CD36 gene, calling into question the previous hypothesis that a platelet-specific silent allele exists near or at the CD36 gene.

 
  • References

  • 1 Greenwalt DE, Lipsky RH, Ockenhouse CF, Ikeda H, Tandon NN, Jamieson GA. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 1992; 80: 1150-5.
  • 2 Tandon NN, Lipsky RH, Burgess WH, Jamieson GA. Isolation and characterization of platelet glycoprotein IV (CD36). J Biol Chem 1989; 264: 7570-5.
  • 3 Knowles II DM, Tolidjian B, Marboe C, D’Agati V, Grimes M, Chess L. Monoclonal anti-human monocyte antibodies OKM1 and OKM5 possess distinctive tissue distributions including differential reactivity with vascular endothelium. J Immunol 1984; 132: 2170-3.
  • 4 Edelman P, Vinci G, Villeval JL, Vainchenker W, Henri A, Miglierina R, Rouger P, Reviron J, Breton GJ, Sureau C, Edelman L. A monoclonal antibody against an erythrocyte ontogenic antigen identifies fetal and adult erythroid progenitors. Blood 1986; 67: 56-63.
  • 5 Greenwalt DE, Watt KW, So OY, Jiwani N. PAS IV, an integral membrane protein of mammary epithelial cells, is related to platelet and endothelial cell CD36 (GP IV). Biochemistry 1990; 29: 7054-9.
  • 6 Tandon NN, Ockenhouse CF, Greco NJ, Jamieson GA. Adhesive functions of platelets lacking glycoprotein IV (CD36). Blood 1991; 78: 2809-13.
  • 7 Asch AS, Liu I, Briccetti FM, Barnwell JW, Kwakye-Berko F, Dokun A, Goldberger J, Pernambuco M. Analysis of CD36 binding domain: ligand specificity controlled by dephosphorylation of an ectodomain. Science 1991; 262: 1436-40.
  • 8 Silverstein RL, Asch AS, Nachman RL. Glycoprotein IV mediates thrombospondin-dependent platelet-monocyte and platelet – U937 cell adhesion. J Clin Invest 1989; 84: 546-52.
  • 9 Leung LL, Li WX, McGregor JL, Albrecht G, Howard RJ. CD36 peptides enhance or inhibit CD36-thrombospondin binding. J Biol Chem 1992; 267: 18244-50.
  • 10 Asch AS, Barnwell J, Silverstein RL, Nachman RL. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J Clin Invest 1989; 84: 765-72.
  • 11 Lian EC, Siddiqui FA, Jamieson GA, Tandon NN. Platelet agglutinating protein p37 causes platelet agglutination through its binding to membrane glycoprotein IV. Thromb Haemost 1991; 65: 102-6.
  • 12 Siddiqui FA, Lian EC. Platelet-agglutinating protein p37 from thrombotic thrombocytopenic purpura plasma forms complexes with platelet membrane glycoprotein IV. Biochem Int 1992; 27: 485-96.
  • 13 Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA. CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993; 268: 11811-6.
  • 14 Abumrad NA, El-Maghrabi MR, Amri E, Lopez E, Grimaldi PA. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem 1993; 268: 17665-8.
  • 15 Tanaka T, Sohmiya K, Kawamura K. Is CD36 deficiency an etiology of hereditary hypertrophic cardiomyopathy?. J Mol Cell Cardiol 1997; 29: 121-7.
  • 16 Take H, Kashiwagi H, Tomiyama Y, Honda S, Honda Y, Mizutani H, Furubayashi T, Karasuno T, Nishimura T, Kanayama Y, Kurata Y, Matsuzawa Y. Expression of GP IV and Naka antigen on monocytes in Naka-negative subjects whose platelets lack GP IV. Brit J Haematol 1993; 84: 387-91.
  • 17 Yamamoto N, Akamatsu N, Sakuraba H, Yamazaki H, Tanoue K. Platelet glycoprotein IV (CD36) deficiency is associated with the absence (type I) or the presence (type II) of glycoprotein IV on monocytes. Blood 1994; 83: 392-7.
  • 18 Ikeda H, Mitani T, Ohnuma M, Haga H, Ohtsuka S, Kato T, Nakase T, Sekiguchi S. A new platelet-specific antigen Naka, involved in the refractoriness of HLA-matched platelet transfusion. Vox Sang 1989; 57: 213-7.
  • 19 Tomiyama Y, Take H, Ikeda H, Mitani T, Furubayashi T, Mizutani H, Yamamoto N, Tandon NN, Sekiguchi S, Jamieson GA, Kurata Y, Yonezawa T, Tarui S. Identification of the platelet-specific alloantigen, Naka, on platelet membrane glycoprotein IV. Blood 1990; 75: 684-7.
  • 20 Yamamoto N, Ikeda H, Tandon NN, Herman J, Tomiyama Y, Mitani T, Sekiguchi S, Lipsky R, Kralisz U, Jamieson GA. A platelet glycoprotein (GP) deficiency in healthy blood donors: Naka-platelet lack detectable GP IV (CD36). Blood 1990; 76: 1698-703.
  • 21 Fernandez-Ruiz E, Armesilla AL, Sanchez-Madrid F, Vega MA. The gene encoding collagen type I and thrombospondin receptor CD36 is located on chromosome 7q11,12. Genomics 1993; 17: 759-61.
  • 22 Kashiwagi H, Tomiyama Y, Honda S, Kosugi S, Shiraga M, Nagao N, Sekiguchi S, Kanakura Y, Kurata Y, Matsuzawa Y. Molecular basis of CD36 deficiency. J Clin Invest 1995; 95: 1040-6.
  • 23 Kashiwagi H, Tomiyama Y, Kosugi S, Shiraga M, Lipsky RH, Kanakura Y, Kurata Y, Matsuzawa Y. Identification of molecular defects in a subject with type I CD36 deficiency. Blood 1994; 83: 3545-52.
  • 24 Kashiwagi H, Tomiyama Y, Nozaki S, Honda S, Kosugi S, Shiraga M, Nakagawa T, Nagao N, Kanakura Y, Kurata Y, Matsuzawa Y. A single nucleotide insertion in codon 317 of the CD36 gene leads to CD36 deficiency. Arterioscler Thromb Vasc Biol 1996; 16: 1026-32.
  • 25 Kashiwagi H, Tomiyama Y, Kosugi S, Shiraga M, Lipsky RH, Nagao N, Kanakura Y, Kurata Y, Matsuzawa Y. Family studies of type II CD36 deficient subjects: Linkage of a CD36 allele to a platelet-specific silent mRNA expression defects causing type II CD36 deficiency. Thromb Haemost 1995; 74: 758-63.
  • 26 Lipsky RH, Ikeda H, Medved ES. A dinucleotide repeat in intron 3 of CD36. Hum Mol Genet 1994; 03: 217.
  • 27 Armesilla AL, Vega MA. Structural organization of the gene for human CD36 glycoprotein. J Biol Chem 1994; 269: 18985-91.
  • 28 Sugimoto Y, Tsuruo T. National Center for Biotechnology Information, GenBank. 1992
  • 29 Santoso S, Santoso S, Kiefel V, Masri R, Mueller-Eckhardt C. Frequency of platelet-specific antigens among Indonesians. Transfusion 1993; 33: 739-41.
  • 30 Lin M, Shieh SH, Yang TF. Frequency of platelet-specific antigens among Chinese in Taiwan. Transfusion 1993; 33: 155-7.
  • 31 Curtis BR, Aster RH. Incidence of Naka-negative platelet phenotype in African Americans is similar to that of Asians. Transfusion 1996; 36: 331-4.
  • 32 Kiefel V, Kroll H, Bonnert J. Platelet alloantigen frequencies in Caucasians: a serological study. Transfus Med 1993; 03: 237-42.
  • 33 Simsek S, Faber NM, Bleeker PM, Vlekke AB, Huiskes E, Goldschmeding R, von dem Borne AE. Determination of human platelet antigen frequencies in the Dutch population by immunophenotyping and DNA (allele-specific restriction enzyme) analysis. Blood 1993; 81: 835-40.
  • 34 Williams T, Tjan R. Analysis of the DNA-binding and activation properties of the human transcription factor AP-2. Genes & Dev 1991; 05: 670-82.
  • 35 Postel EH, Mango SE, Flint SJ. A nuclease-hypersensitive element of the human c-myc promotor interacts with transcription initiation factor. Mol Cell Biol 1989; 09: 5123-33.
  • 36 Wells RD. Unusual DNA structures. J Biol Chem 1988; 263: 1095-8.
  • 37 Kozak M. An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 1987; 15: 8125-48.
  • 38 Marth JD, Overell RW, Meier KE, Krebs E, Perlmutter RM. Translational activation of the lck proto-oncogene. Nature 1988; 332: 171-3.
  • 39 Luscher B, Stauber C, Schindler R, Schumperli D. Faithful cell-cycle regulation of a recombinant mouse histone H4 gene is controlled by sequences in the 3’-terminal part of the gene. Proc Natl Acad Sci USA 1985; 82: 4389-93.
  • 40 Noguchi K, Naito M, Tezuka K, Ishii S, Seimiya H, Sugimoto Y, Amann E, Tsuruo T. cDNA expression cloning of the 85-kDa protein overexpressed in adriamycin-resistant cells. Biochem Biophys Res Commun 1993; 192: 88-95.
  • 41 Wyler B, Daviet L, Borkiewicz H, Bordet JC, McGregor JL. Cloning of the cDNA encoding human platelet CD36: comparison to PCR amplified fragments of monocyte, endothelial and HEL cells. Thromb Haemost 1993; 70: 500-5.
  • 42 Ault KA, Rinder HM, Mitchell J, Carmody MB, Vary CP, Hillman RS. The significance of platelets with increased RNA content (reticulated platelets). A measure of the rate of thrombopoiesis. Am J Clin Pathol 1992; 98: 637-46.
  • 43 Ho PJ, Hall GW, Watt S, West NC, Wimperis JW, Wood WG, Thein SL. Unusually severe heterozygous β-thalassemia: evidence for an interacting gene affecting globin translation. Blood 1998; 92: 3428-35.
  • 44 Yesner LM, Huh HY, Pearce SF, Silverstein RL. Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators. Arterioscler Thromb Vasc Biol 1996; 16: 1019-25.
  • 45 Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPAR-γ. Cell 1998; 93: 229-40.
  • 46 Sfeir Z, Ibrahimi A, Grimaldi P, Abumrad N. Regulation of FAT/CD36 gene expression: further evidence in support of a role of the protein in fatty acid binding/transport. Prostaglandins Leukot Essent Fatty Acids 1997; 57: 17-21.