Thromb Haemost 2000; 83(04): 592-597
DOI: 10.1055/s-0037-1613869
Commentary
Schattauer GmbH

A Functional Assay Suggests that Heterodimers Exist in Two C-Terminal γ-Chain Dysfibrinogens: Matsumoto I and Vlissingen/Frankfurt IV

Kelly A. Hogan
1   From the Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC. USA
,
Susan T. Lord
1   From the Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC. USA
,
Nobuo Okumura
2   Division of Clinical Chemistry and Medical Technology, School of Allied Medical Sciences, Shinshu University, Matsumoto, Japan
,
Fumiko Terasawa
2   Division of Clinical Chemistry and Medical Technology, School of Allied Medical Sciences, Shinshu University, Matsumoto, Japan
,
Dennis K. Galanakis
3   SUNY, Stony Brook, USA
,
Inge Scharrer
4   Klinikum der J.-W.-Goethe-Universität, Frankfurt, Germany
,
Oleg V. Gorkun
1   From the Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC. USA
› Author Affiliations
This work was supported by a National Institute of Health Grant R01 HL 31048 to Susan T. Lord and a U.S. Public Health Grant AG 10143 to Dennis K. Galanakis.We thank Li Fang Ping and Kasim McLain for their assistance with recombinant fibrinogen expression and purification.
Further Information

Publication History

Received 10 August 1999

Accepted after revision 24 November 1999

Publication Date:
08 December 2017 (online)

Summary

Because it contains three pairs of polypeptides, fibrinogen isolated from heterozygous individuals is expected to be a mixture of homodimers and heterodimers. Nevertheless, heterozygous individuals with only homodimers have been identified. We synthesized two recombinant fibrinogens with the mutations from fibrinogen Vlissingen/ Frankfurt IV (γΔ319, 320) and Matsumoto I (γD364H), both identified in heterozygous individuals. We found that polymerization of these fibrinogens was undetectable in 30 min; polymerization of a 1:1 mixture of variant and normal fibrinogen was the same as polymerization of a 1:1 mixture of buffer and normal fibrinogen; polymerization of either plasma fibrinogen was markedly impaired when compared to the 1:1 mixture of the respective variant and normal fibrinogens. We conclude that each plasma fibrinogen is a mix of homodimers and heterodimers, such that the incorporation of heterodimers into the fibrin clot impairs polymerization. We suggest that incorporation of heterodimers can induce clinical symptoms.

 
  • References

  • 1 Blombäck B, Blombäck M, Henschen A, Hessel B, Iwanaga S, Woods KR. N-terminal disulfide knot of human fibrinogen. Nature 1968; 218: 130-4.
  • 2 Blombäck B, Blombäck M. The molecular structure of fibrinogen. Ann NY Acad. Sci 1972; 202: 77-97.
  • 3 Henschen A, Lottspeich F, Kehl M, Southan C. Covalent structure of fibrinogen. Ann NY Acad. Sci 1983; 408: 28-43.
  • 4 Crabtree GR, Kant JA. Molecular cloning of cDNA for the α, β, and γ chains of rat fibrinogen. J Biol. Chem 1981; 256: 9718-23.
  • 5 Kudryk B, Okada M, Redman CM, Blombäck B. Biosynthesis of dog fibrinogen. Characterization of nascent fibrinogen in the rough endoplasmic reticulum. Eur J Biochem 1982; 125: 673-82.
  • 6 Huang S, Mulvihill ER, Farrell DH, Chung DW, Davie EW. Biosynthesis of human fibrinogen. Subunit interactions and potential intermediates in the assembly. J Biol Chem 1993; 268: 8919-26.
  • 7 Olexa SA, Budzynski AZ. Evidence for four different polymerization sites involved in human fibrin formation. Proc Natl Acad. Sci USA 1980; 77: 1374-8.
  • 8 Spraggon G, Everse SJ, Doolittle RF. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature 1997; 389: 455-62.
  • 9 Index of variant human fibrinogens. Ebert RF. ed. Boca Raton: CRC Press; 1994: 41.
  • 10 Terasawa F, Okumura N, Higuchi Y, Ishikawa S, Tozuka M, Ishida F, Kitano K, Katsuyama T. Fibrinogen Matsumoto III: a variant with gamma 275 Arg → Cys (CGC → TGC) – Comparison of fibrin polymerization properties with those of Matsumoto I (gamma 364 Asp → His) and Matsumoto II (gamma 308 Asn → Lys). Thromb Haemost 1999; 81: 763-6.
  • 11 Koopman J, Haverkate F, Briet E, Lord ST. A congenitally abnormal fibrinogen (Vlissingen) with a 6-base deletion in the gamma chain gene, causing defective calcium binding and impaired fibrin polymerization. J Biol Chem 1991; 266: 13456-61.
  • 12 Haverkate F, Samama M. Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee on Fibrinogen. Thromb Haemost 1995; 73: 151-61.
  • 13 Binnie CG, Hettasch JM, Strickland E, Lord ST. Characterization of purified recombinant fibrinogen: partial phosphorylation of fibrinopeptide A. Biochemistry 1993; 32: 107-13.
  • 14 Deng WP, Nickloff JA. Site directed mutagenesis of virtually any plasmid by eliminating a unique site. Anal. Biochem 1992; 200: 81-8.
  • 15 Lord ST, Strickland E, Jayjock E. Strategy for recombinant multichain protein synthesis: fibrinogen B beta-chain variants as thrombin substrates. Biochemistry 1996; 35: 2342-6.
  • 16 Okumura N, Gorkun OV, Lord ST. Severely impaired polymerization of recombinant fibrinogen γ-364 Asp → His, the substitution discovered in a heterozygous individual. J Biol Chem 1997; 272: 29596-601.
  • 17 Takebe M, Soe G, Kohno I, Sugo T, Matsuda M. Calcium ion-dependent monoclonal antibody against human fibrinogen: preparation, characterization, and application to fibrinogen purification. Thromb Haemost 1995; 73: 662-7.
  • 18 Gorkun OV, Veklich YI, Weisel JW, Lord ST. The conversion of fibrinogen to fibrin: recombinant fibrinogen typifies plasma fibrinogen. Blood 1997; 89: 4407-14.
  • 19 Mosesson MW, Sherry S. The preparation and properties of human fibrinogen of relatively high solubility. Biochemistry 1966; 05: 2829-35.
  • 20 Furlan M, Rupp C, Beck EA. Inhibition of fibrin polymerization by fragment D is affected by calcium, Gly-Pro-Arg and Gly-His-Arg. Biochim Biophys Acta 1983; 742: 25-32.
  • 21 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 1661-4.
  • 22 Miyata T, Terukina S, Matsuda M, Kasamatsu A, Takeda Y, Murakami T, Iwanaga S. Fibrinogens Kawaguchi and Osaka: an amino acid substitution of Aα Arginine-16 to Cysteine which forms an extra interchain disulfide bridge between two Aα chains. J Biochem 1987; 102: 93-101.
  • 23 Galanakis DK, Henschen A, Keeling M, Kehl M, Dismore R, Peerschke EI. Fibrinogen Louisville: an Aα16Arg → His defect that forms no hybrid molecules in heterozygous individuals and inhibits aggregation of normal fibrin monomers. Ann NY Acad. Sci 1983; 408: 644-8.
  • 24 Ratnoff OD, Shainoff JR, Welches WR, Smejkal GB, DiBello PM, Lill H, Periman P. Distributive incorporation of mutant Aα-chains into fibrinogen molecules. Identification of Mendelian proportions of variant in a heterozygous Aα#16R → H dysfibrinogenemia, fibrinogen Amarillo by GPRpharoses. XVth International Fibrinogen Workshop. Cleveland, Ohio: 1998
  • 25 Siebenlist KR, Prchal JT, Mosesson MW. Fibrinogen Birmingham: a heterozygous dysfibrinogenemia (Aα 16 Arg → His) containing heterodimeric molecules. Blood 1988; 71: 613-8.
  • 26 Mosesson MW, Finlayson JS, Umfleet RA. Human fibrinogen heterogeneities. III. Identification of γ chain variants. J Biol Chem 1972; 247: 5223-7.
  • 27 Fu Y, Zhang J, Redman CM, Grieninger G. Formation of the human fibrinogen subclass Fib420: disulfide bonds and glycosylation in its unique (αE chain) domains. Blood 1998; 92: 3302-8.
  • 28 Grieninger G, Lu X, Cao Y, Fu Y, Kudryk BJ, Galanakis DK, Hertzberg KM. Fib420, the novel fibrinogen subclass: newborn levels are higher than adult. Blood 1997; 90: 2609-14.
  • 29 Veklich YI, Gorkun OV, Medved LV, Nieuwenhuizen W, Weisel JW. Carboxyl-terminal portions of the α chains of fibrinogen and fibrin. Localization by electron microscopy and the effects of isolated αC fragments on polymerization. J Biol Chem 1993; 268: 13577-85.
  • 30 Medved LV, Gorkun OV, Privalov PL. Structural organization of C-terminal parts of fibrinogen Aα-chains. FEBS Lett 1983; 160: 291-5.
  • 31 Cierniewski CS, Plow EF, Edgington TS. Conformation of the carboxyterminal region of the A alpha chain of fibrinogen as elucidated by immunochemical analyses. Eur J Biochem 1984; 141: 489-96.
  • 32 Galanakis DK. Inherited dysfibrinogenemia: Emerging abnormal structure association with pathologic and nonpathologic dysfunctions. Semin Thromb Hemost 1993; 19: 386-95.