Neuropediatrics 2018; 49(02): 123-134
DOI: 10.1055/s-0037-1609038
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Rituximab, IVIg, and Tetracosactide (ACTH1–24) Combination Immunotherapy (“RITE-CI”) for Pediatric Opsoclonus-Myoclonus Syndrome: Immunomarkers and Clinical Observations

Michael R. Pranzatelli
1   National Pediatric Myoclonus Center and National Pediatric Neuroinflammation Organization, Inc., Orlando, Florida
,
Elizabeth D. Tate
1   National Pediatric Myoclonus Center and National Pediatric Neuroinflammation Organization, Inc., Orlando, Florida
,
Michael Alber
2   Department of Neuropaediatrics, Developmental Neurology, Social Paediatrics, University Children's Hospital Tübingen, Tübingen, Germany
,
Maha Awadalla
3   Pediatric Neurology Unit, Dr. Erfan and Bagedo General Hospital, Jeddah, Kingdom of Saudi Arabia
,
Lubov Blumkin
4   Pediatric Neurology Unit, Wolfson Medical Center, Holon, Sackler School of Medicine, Tel-Aviv University, Holon, Israel
,
Elena S. Lina
5   Department of Psychoneurology No. 2, Federal State Medical Institution, Russian Children's Clinical Hospital, Ministry of Health Russian Federation, Moscow, Russia
,
Steffen Leiz
6   Pediatric Neurology Unit, Department of Pediatrics and Adolescent Medicine, Hospital Dritter Orden, Munich, Germany
,
Judit Móser
7   Department of Neurology, Heim Pal Children's Hospital, Budapest, Hungary
› Author Affiliations
Funding This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Further Information

Publication History

15 February 2017

30 October 2017

Publication Date:
19 December 2017 (online)

Abstract

Opsoclonus-myoclonus syndrome (OMS) is a neuroinflammatory disorder with pervasive morbidity that warrants better treatments. Twelve children with moderate/severe OMS (total score 23 ± 6) who did not remit to multiple immunotherapies were evaluated for neuroinflammation in a case–control study using cerebrospinal fluid (CSF) lymphocyte subset analysis by flow cytometry, chemokine/cytokine analysis by enzyme-linked immunoadsorption assay (ELISA), and oligoclonal bands by immunofixation with isoelectric focusing. Observations made on empirical treatment with rituximab, IVIg, and tetracosactide combination immunotherapy (coined “RITE-CI”) were analyzed. All of the patients tested for multiple inflammatory markers were positive; 75% had ≥3 CSF markers. Fifty percent had CSF oligoclonal bands; 58%, B cell expansion; and 50 to 100%, elevated concentrations of multiple chemokines and neuronal/axonal marker neurofilament light chain. After RITE-CI, total score dropped significantly in the group (−85%, p < 0.0001) from moderate to trace, and by 2 to 4 severity categories in each patient. The 24-week schedule was well tolerated and clinically effective for moderate or severe OMS, as were other schedules. RITE-CI is feasible and effective as rescue therapy and presents an initial option for children with moderate/severe OMS. Though preliminary, the schedule can be adjusted to patient severity, propensity for relapse, and other factors.

Supplementary Material

 
  • References

  • 1 Pranzatelli MR, Tate ED. Opsoclonus myoclonus syndrome. In: Swaiman, et al. eds. Swaiman's Pediatric Neurology: Principles and Practice. 6th ed., Chapter 120. Oxford: Elsevier; 2017
  • 2 Kinsbourne M. Myoclonic encephalopathy of infants. J Neurol Neurosurg Psychiatry 1962; 25 (03) 271-276
  • 3 Tate ED, Allison TJ, Pranzatelli MR, Verhulst SJ. Neuroepidemiologic trends in 105 US cases of pediatric opsoclonus-myoclonus syndrome. J Pediatr Oncol Nurs 2005; 22 (01) 8-19
  • 4 Mitchell WG, Wooten AA, O'Neil SH, Rodriguez JG, Cruz RE, Wittern R. Effect of increased immunosuppression on developmental outcome of opsoclonus myoclonus syndrome (OMS). J Child Neurol 2015; 30 (08) 976-982
  • 5 Pranzatelli MR, Tate ED. Trends and tenets in relapsing and progressive opsoclonus-myoclonus syndrome. Brain Dev 2016; 38 (05) 439-448
  • 6 Fühlhuber V, Bick S, Tschernatsch M. , et al. Autoantibody-mediated cytotoxicity in paediatric opsoclonus-myoclonus syndrome is dependent on ERK-1/2 phophorylation. J Neuroimmunol 2015; 289: 182-186
  • 7 Pranzatelli MR, Travelstead AL, Tate ED. , et al. B- and T-cell markers in opsoclonus-myoclonus syndrome: immunophenotyping of CSF lymphocytes. Neurology 2004; 62 (09) 1526-1532
  • 8 Pranzatelli MR, Tate ED, Verhulst SJ. , et al. Pediatric dosing of rituximab revisited: serum concentrations in opsoclonus-myoclonus syndrome. J Pediatr Hematol Oncol 2010; 32 (05) e167-e172
  • 9 Pranzatelli MR, Tate ED, Swan JA. , et al. B cell depletion therapy for new-onset opsoclonus-myoclonus. Mov Disord 2010; 25 (02) 238-242
  • 10 Pranzatelli MR, Slev PR, Tate ED, Travelstead AL, Colliver JA, Joseph SA. Cerebrospinal fluid oligoclonal bands in childhood opsoclonus-myoclonus. Pediatr Neurol 2011; 45 (01) 27-33
  • 11 Pranzatelli MR, Tate ED, Hoefgen E, Swan J, Colliver JA. Therapeutic down-regulation of central and peripheral B-cell activating factor (BAFF) production in pediatric opsoclonus-myoclonus syndrome. Cytokine 2008; 44 (01) 26-32
  • 12 Pranzatelli MR, Tate ED, McGee NR. , et al. Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS. J Neuroimmunol 2012; 243 (1-2): 81-88
  • 13 Pranzatelli MR, Tate ED, Travelstead AL, Verhulst SJ. Chemokine/cytokine profiling after rituximab: reciprocal expression of BCA-1/CXCL13 and BAFF in childhood OMS. Cytokine 2011; 53 (03) 384-389
  • 14 Pranzatelli MR, Tate ED, McGee NR, Travelstead AL, Verhulst SJ, Ransohoff RM. Expression of CXCR3 and its ligands CXCL9, -10 and -11 in paediatric opsoclonus-myoclonus syndrome. Clin Exp Immunol 2013; 172 (03) 427-436
  • 15 Pranzatelli MR, Tate ED, McGee NR, Ransohoff RM. CCR4 agonists CCL22 and CCL17 are elevated in pediatric OMS sera: rapid and selective down-regulation of CCL22 by ACTH or corticosteroids. J Clin Immunol 2013; 33 (04) 817-825
  • 16 Pranzatelli MR, Tate ED, McGee NR, Ransohoff RM. CCR7 signaling in pediatric opsoclonus-myoclonus: upregulated serum CCL21 expression is steroid-responsive. Cytokine 2013; 64 (01) 331-336
  • 17 Pranzatelli MR, Tate ED, McGee NR, Verhulst SJ. CSF neurofilament light chain is elevated in OMS (decreasing with immunotherapy) and other pediatric neuroinflammatory disorders. J Neuroimmunol 2014; 266 (1-2): 75-81
  • 18 Pranzatelli MR, Tate ED, Travelstead AL, Colliver JA. Long-term cerebrospinal fluid and blood lymphocyte dynamics after rituximab for pediatric opsoclonus-myoclonus. J Clin Immunol 2010; 30 (01) 106-113
  • 19 Tate ED, Pranzatelli MR, Verhulst SJ. , et al. Active comparator-controlled, rater-blinded study of corticotropin-based immunotherapies for opsoclonus-myoclonus syndrome. J Child Neurol 2012; 27 (07) 875-884
  • 20 Montero-Melendez T. ACTH: The forgotten therapy. Semin Immunol 2015; 27 (03) 216-226 . Doi: 10.1016/j.smim.2015.02.003
  • 21 Baker JR, Bennett HP, Hudson AM, McMartin C, Purdon GE. On the metabolism of two adrenocorticotrophin analogues. Clin Endocrinol (Oxf) 1976; 5 (Suppl): 61S-72S
  • 22 Gettig J, Cummings JP, Matuszewski K. H.p. Acthar gel and cosyntropin review: clinical and financial implications. P&T 2009; 34 (05) 250-257
  • 23 Package Leaflet: Synacthen® Depot Ampules 1 mg/ml Tetracosactide acetate
  • 24 Lipinski D, Kratzer W, Daum R. Die infantile myoklonische enzephalopathie—ein paraneoplastiches Syndrom bei Neuroblastoma [Myoclonic encephalopathy of infants—a paraneoplastic syndrome in neuroblastoma]. Z Kinderchir 1975; 16: 11-117
  • 25 Corrias A, Nurchi AM, Rossi G, Sorcinelli R, Pusceddu G, Corda R. Opsoclonic encephalopathy in childhood (Kinsbourne syndrome) [in Italian]. Pediatr Med Chir 1985; 7 (03) 437-441
  • 26 Snead III OC. Treatment of infantile spasms. Pediatr Neurol 1990; 6 (03) 147-150
  • 27 Pranzatelli MR. On the molecular mechanism of adrenocorticotrophic hormone in the CNS: neurotransmitters and receptors. Exp Neurol 1994; 125 (01) 142-161
  • 28 Arnason BG, Berkovich R, Catania A, Lisak RP, Zaidi M. Mechanisms of action of adrenocorticotropic hormone and other melanocortins relevant to the clinical management of patients with multiple sclerosis. Mult Scler 2013; 19 (02) 130-136
  • 29 Bonnefoy J-Y. The biomarker revolution: a step toward personalized medicine. Per Med 2008; 5 (06) 553-556
  • 30 Day M, Rutkowski JL, Feuerstein GZ. Translational medicine--a paradigm shift in modern drug discovery and development: the role of biomarkers. Adv Exp Med Biol 2009; 655: 1-12
  • 31 Edwards KR, Goyal J, Plavina T. , et al. Feasibility of the use of combinatorial chemokine arrays to study blood and CSF in multiple sclerosis. PLoS One 2013; 8 (11) e81007
  • 32 Han S, Lin YC, Wu T. , et al. Comprehensive immunophenotyping of cerebrospinal fluid cells in patients with neuroimmunological diseases. J Immunol 2014; 192 (06) 2551-2563
  • 33 Bielekova B. Perspective: who dares, wins. Nature 2016; 540 (7631): S10
  • 34 Kothur K, Wienholt L, Mohammad SS. , et al. Utility of CSF cytokine/chemokines as markers of active intrathecal inflammation: comparison of demyelinating, anti-NMDAR and enteroviral encephalitis. PLoS One 2016; 11 (08) e0161656 . Doi: 10.1371/journal.pone.0161656
  • 35 Becher B, Spath S, Goverman J. Cytokine networks in neuroinflammation. Nat Rev Immunol 2017; 17 (01) 49-59
  • 36 Nixon R, Bergvall N, Tomic D, Sfikas N, Cutter G, Giovannoni G. No evidence of disease activity: indirect comparisons of oral therapies for the treatment of relapsing-remitting multiple sclerosis. Adv Ther 2014; 31 (11) 1134-1154
  • 37 Havrdova E, Galetta S, Stefoski D, Comi G. Freedom from disease activity in multiple sclerosis. Neurology 2010; 74 (Suppl. 03) S3-S7
  • 38 Bonnan M, Marasescu R, Demasles S, Krim E, Barroso B. No evidence of disease activity (NEDA) in MS should include CSF biology - towards a ‘Disease-Free Status Score’. Mult Scler Relat Disord 2017; 11: 51-55
  • 39 Tate ED, McGee NM, Pranzatelli MR. Clinical and demographic features of 389 children with OMS: an international cohort. Proceedings of the 13th International Child Neurol Congress, Iguaza Falls, Brazil, May 4–9, 2014;FP79:27
  • 40 Kaufman GN, Massoud AH, Dembele M, Yona M, Piccirillo CA, Mazer BD. Induction of regulatory T cells by intravenous immunoglobulin: a bridge between adaptive and innate immunity. Front Immunol 2015; 6: 469 . Doi: 10.3389/fimmu.2015.00469
  • 41 Dores RM. Adrenocorticotropic hormone, melanocyte-stimulating hormone, and the melanocortin receptors: revisiting the work of Robert Schwyzer: a thirty-year retrospective. Ann N Y Acad Sci 2009; 1163: 93-100
  • 42 Muceniece R, Dambrova M. Melanocortins in brain inflammation: the role of melanocortin receptor subtypes. Adv Exp Med Biol 2010; 681: 61-70
  • 43 Caruso C, Carniglia L, Durand D, Scimonelli TN, Lasaga M. Astrocytes: new targets of melanocortin 4 receptor actions. J Mol Endocrinol 2013; 51 (02) R33-R50
  • 44 Kokubo M, Asai K, Yamamoto N. , et al. ACTH(1-24) down-regulates expression of ciliary neurotrophic factor mRNA in cultured rat astrocyte. Pediatr Res 2002; 52 (06) 950-957
  • 45 Loram LC, Culp ME, Connolly-Strong EC, Sturgill-Koszycki S. Melanocortin peptides: potential targets in systemic lupus erythematosus. Inflammation 2015; 38 (01) 260-271 . Doi: 10.1007/s10753-014-0029-5
  • 46 Dores RM, Londraville RL, Prokop J, Davis P, Dewey N, Lesinski N. Molecular evolution of GPCRs: melanocortin/melanocortin receptors. J Mol Endocrinol 2014; 52 (03) T29-T42