J Pediatr Infect Dis 2017; 12(04): 264-270
DOI: 10.1055/s-0037-1603497
Review Article
Georg Thieme Verlag KG Stuttgart · New York

Nanotechnology-Based Approaches in Pediatric Parasitic Infections

Muhammad Nawaz
1   Department of Nano-Medicine Research, Institute for Research and Medical Consultations (IRMC), University of Dammam, Dammam, Saudi Arabia
› Author Affiliations
Further Information

Publication History

07 November 2016

12 January 2017

Publication Date:
07 June 2017 (online)

Abstract

Nanotechnology is getting more importance in pharmaceutical chemistry and has a significant role in enabling the drugs in targeting specific cells and tissues. Dose administration and formulation of drugs for pediatric patients remain a challenge; an ideal pediatric formulation must be in an appropriate dosage form that can be handled by the pediatric patients. Drug pharmacokinetics in children differs from the adults and also differs in toxicity and side effects. Therefore, treatment of diseases in pediatric patients cannot be simplified just to adjust the body weight or using measures such as cutting pills in half. In this regard, application of innovative techniques such as nanotechnology in the pediatric population is receiving enormous attention. This study discussed the application of nanotechnology for the treatment of malaria, leishmaniasis, toxoplasmosis, and schistosomiasis in pediatric patients.

 
  • References

  • 1 Farokhzad OC, Jon S, Khademhosseini A, Tran TN, Lavan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 2004; 64 (21) 7668-7672
  • 2 Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63 (03) 136-151
  • 3 Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine (Lond) 2013; 9 (01) 1-14
  • 4 Pui CH, Gajjar AJ, Kane JR, Qaddoumi IA, Pappo AS. Challenging issues in pediatric oncology. Nat Rev Clin Oncol 2011; 8 (09) 540-549
  • 5 Strolin Benedetti M, Whomsley R, Baltes EL. Differences in absorption, distribution, metabolism and excretion of xenobiotics between the paediatric and adult populations. Expert Opin Drug Metab Toxicol 2005; 1 (03) 447-471
  • 6 Bridge JA, Iyengar S, Salary CB. , et al. Clinical response and risk for reported suicidal ideation and suicide attempts in pediatric antidepressant treatment: a meta-analysis of randomized controlled trials. JAMA 2007; 297 (15) 1683-1696
  • 7 Gans-Brangs KR, Plourde PV. The evolution of legislation to regulate pediatric clinical trials: Present and continuing challenges. Adv Drug Deliv Rev 2006; 58 (01) 106-115
  • 8 Sly PD, Schüepp K. Nanoparticles and children's lungs: is there a need for caution?. Paediatr Respir Rev 2012; 13 (02) 71-72
  • 9 Zisowsky J, Krause A, Dingemanse J. Drug development for pediatric populations: regulatory aspects. Pharmaceutics 2010; 2 (04) 364-388
  • 10 World Health Organization. World Malaria Report. Available at: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/ . Accessed December, 2015
  • 11 Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: how can it be achieved?. Nat Rev Microbiol 2006; 4 (09) 682-695
  • 12 Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 2005; 434 (7030): 214-217
  • 13 Brabin BJ. An analysis of malaria in pregnancy in Africa. Bull World Health Organ 1983; 61 (06) 1005-1016
  • 14 Todd CW, Vankatachalam U, Escalante AA, Lal AA. Encyclopedia of infectious diseases: modern methodologies. In: Tibayrenc M. , ed. Malaria Vaccines. Hoboken, NJ: John Wiley & Sons, Inc.; 2007: 137-150
  • 15 van Vianen PH, Klayman DL, Lin AJ. , et al. Plasmodium berghei: the antimalarial action of artemisinin and sodium artelinate in vivo and in vitro, studied by flow cytometry. Exp Parasitol 1990; 70 (02) 115-123
  • 16 Kannan R, Kumar K, Sahal D, Kukreti S, Chauhan VS. Reaction of artemisinin with haemoglobin: implications for antimalarial activity. Biochem J 2005; 385 (Pt 2): 409-418
  • 17 Forrest ML, Kwon GS. Clinical developments in drug delivery nanotechnology. Adv Drug Deliv Rev 2008; 60 (08) 861-862
  • 18 Mettens P, Dubois PM, Demoitié MA. , et al. Improved T cell responses to Plasmodium falciparum circumsporozoite protein in mice and monkeys induced by a novel formulation of RTS,S vaccine antigen. Vaccine 2008; 26 (08) 1072-1082
  • 19 Mosqueira VCF, Loiseau PM, Bories C, Legrand P, Devissaguet JP, Barratt G. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob Agents Chemother 2004; 48 (04) 1222-1228
  • 20 Santos-Magalhães NS, Mosqueira VC. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010; 62 (4-5): 560-575
  • 21 Shah PP, Mashru RC. Palatable reconstitutable dry suspension of artemether for flexible pediatric dosing using cyclodextrin inclusion complexation. Pharm Dev Technol 2010; 15 (03) 276-285
  • 22 Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release 2010; 145 (03) 257-263
  • 23 Sosa N, Capitán Z, Nieto J. , et al. Randomized, double-blinded, phase 2 trial of WR 279,396 (paromomycin and gentamicin) for cutaneous leishmaniasis in Panama. Am J Trop Med Hyg 2013; 89 (03) 557-563
  • 24 Venkatesan N, Uchino K, Amagase K, Ito Y, Shibata N, Takada K. Gastro-intestinal patch system for the delivery of erythropoietin. J Control Release 2006; 111 (1-2): 19-26
  • 25 Tripathi P, Verma A, Dwivedi P. , et al. Formulation and characterization of amphotericin b loaded nanostructured lipid carriers using microfluidizer. J Biomater Tissue Eng 2014; 4 (03) 194-197
  • 26 Manandhar KD, Yadav TP, Prajapati VK. , et al. Antileishmanial activity of nano-amphotericin B deoxycholate. J Antimicrob Chemother 2008; 62 (02) 376-380
  • 27 Müller RH, Mäder K, Gohla S. ; MuÈller RH. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000; 50 (01) 161-177
  • 28 Dornish M, Kaplan DS, Arepalli SR. Regulatory status of chitosan and derivatives. In: Sarmento B, Neves JD. , eds. Chitosan-Based Systems for Biopharmaceuticals: Delivery, Targeting and Polymer Therapeutics. Chichester, UK: John Wiley & Sons, Ltd.; 2012: 463-481
  • 29 Feng J, Zhao L, Yu Q. Receptor-mediated stimulatory effect of oligochitosan in macrophages. Biochem Biophys Res Commun 2004; 317 (02) 414-420
  • 30 El-Sayed NM, Abdel-Wahab MM, Kishik SM, Alhusseini NF. Do we need to screen Egyptian voluntary blood donors for toxoplasmosis?. Asian Pac J Trop Dis 2016; 6 (04) 260-264
  • 31 Dubey JP. The history of Toxoplasma gondii--the first 100 years. J Eukaryot Microbiol 2008; 55 (06) 467-475
  • 32 Cañón-Franco WA, López-Orozco N, Gómez-Marín JE, Dubey JP. An overview of seventy years of research (1944-2014) on toxoplasmosis in Colombia, South America. Parasit Vectors 2014; 7: 427
  • 33 El-Sayed NM, Ismail KA, Badawy AF, Elhasanein KF. In vivo effect of anti-TNF agent (etanercept) in reactivation of latent toxoplasmosis. J Parasit Dis 2016; 40 (04) 1459-1465
  • 34 Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet 2004; 363 (9425): 1965-1976
  • 35 Rodriguez JB, Szajnman SH. New antibacterials for the treatment of toxoplasmosis; a patent review. Expert Opin Ther Pat 2012; 22 (03) 311-333
  • 36 Weiss LM, Dubey JP. Toxoplasmosis: A history of clinical observations. Int J Parasitol 2009; 39 (08) 895-901
  • 37 D'Angelo JG, Bordón C, Posner GH, Yolken R, Jones-Brando L. Artemisinin derivatives inhibit Toxoplasma gondii in vitro at multiple steps in the lytic cycle. J Antimicrob Chemother 2009; 63 (01) 146-150
  • 38 McLeod R, Muench SP, Rafferty JB. , et al. Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 2001; 31 (02) 109-113
  • 39 Vandhana S, Deepa PR, Aparna G, Jayanthi U, Krishnakumar S. Evaluation of suitable solvents for testing the anti-proliferative activity of triclosan - a hydrophobic drug in cell culture. Indian J Biochem Biophys 2010; 47 (03) 166-171
  • 40 Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7 (09) 771-782
  • 41 Maestrelli F, Mura P, Alonso MJ. Formulation and characterization of triclosan sub-micron emulsions and nanocapsules. J Microencapsul 2004; 21 (08) 857-864
  • 42 World Health Organization. World schistosomiasis report. Available at: http://www.who.int/mediacentre/factsheets/fs115/en/ . Accessed February, 2016
  • 43 McManus DP, Loukas A. Current status of vaccines for schistosomiasis. Clin Microbiol Rev 2008; 21 (01) 225-242
  • 44 Ross AG, Bartley PB, Sleigh AC. , et al. Schistosomiasis. N Engl J Med 2002; 346 (16) 1212-1220
  • 45 Bian CR, Lu DB, Su J, Zhou X, Zhuge HX, Lamberton PH. Serological prevalence of Schistosoma japonicum in mobile populations in previously endemic but now non-endemic regions of China: A systematic review and meta-analysis. PLoS One 2015; 10 (06) e0128896
  • 46 Lindenberg M, Kopp S, Dressman JB. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur J Pharm Biopharm 2004; 58 (02) 265-278
  • 47 Mourão SC, Costa PI, Salgado HR, Gremião MPD. Improvement of antischistosomal activity of praziquantel by incorporation into phosphatidylcholine-containing liposomes. Int J Pharm 2005; 295 (1-2): 157-162
  • 48 Silva AC, Lopes CM, Fonseca J. , et al. Risperidone release from solid lipid nanoparticles (SLN): validated HPLC method and modelling kinetic profile. Curr Pharm Anal 2012; 8 (04) 307-316
  • 49 Souto EB, Muller RH. Lipid nanoparticles (SLN and NLC) for drug delivery. In: Domb J, Tabata Y, Ravi Kumar MNV, Farber S. , eds. Nanoparticles for Pharmaceutical Applications. Los Angeles CA: American Scientific Publishers; 2007: 103-122
  • 50 Xie S, Pan B, Wang M. , et al. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine (Lond) 2010; 5 (05) 693-701
  • 51 Singh KK, Vingkar SK. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm 2008; 347 (1-2): 136-143
  • 52 Rajera R, Nagpal K, Singh SK, Mishra DN. Toxicological study of the primaquine phosphate loaded chitosan nanoparticles in mice. Int J Biol Macromol 2013; 62: 18-24
  • 53 Rodrigues Jr JM, Fessi H, Bories C, Puisieux F, Devissaguet JP. Primaquine-loaded poly(lactide) nanoparticles: physicochemical study and acute tolerance in mice. Int J Pharm 1995; 126 (1–2): 253-260
  • 54 Eltayeb SE, Su Z, Shi Y, Li S, Xiao Y, Ping Q. Preparation and optimization of transferrin-modified-artemether lipid nanospheres based on the orthogonal design of emulsion formulation and physically electrostatic adsorption. Int J Pharm 2013; 452 (1-2): 321-332
  • 55 Ibrahim N, Ibrahim H, Sabater AM, Mazier D, Valentin A, Nepveu F. Artemisinin nanoformulation suitable for intravenous injection: Preparation, characterization and antimalarial activities. Int J Pharm 2015; 495 (02) 671-679
  • 56 Payghan SA, Bhat M. Albumin microspheres containing artemisinin. The Pharmacist 2008; 1 (02) 77-80
  • 57 Borhade V, Pathak S, Sharma S, Patravale V. Formulation and characterization of atovaquone nanosuspension for improved oral delivery in the treatment of malaria. Nanomedicine (Lond) 2014; 9 (05) 649-666
  • 58 Sundar S, Mehta H, Suresh AV, Singh SP, Rai M, Murray HW. Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations. Clin Infect Dis 2004; 38 (03) 377-383
  • 59 Amato VS, Rabello A, Rotondo-Silva A. , et al. Successful treatment of cutaneous leishmaniasis with lipid formulations of amphotericin B in two immunocompromised patients. Acta Trop 2004; 92 (02) 127-132
  • 60 Roychoudhury J, Sinha R, Ali N. Therapy with sodium stibogluconate in stearylamine-bearing liposomes confers cure against SSG-resistant Leishmania donovani in BALB/c mice. PLoS One 2011; 6 (03) e17376
  • 61 Heidari-Kharaji M, Taheri T, Doroud D, Habibzadeh S, Badirzadeh A, Rafati S. Enhanced paromomycin efficacy by solid lipid nanoparticle formulation against Leishmania in mice model. Parasite Immunol 2016; 38 (10) 599-608
  • 62 da Gama Bitencourt JJ, Pazin WM, Ito AS. , et al. Miltefosine-loaded lipid nanoparticles: Improving miltefosine stability and reducing its hemolytic potential toward erythtocytes and its cytotoxic effect on macrophages. Biophys Chem 2016; 217: 20-31
  • 63 Kumar R, Sahoo GC, Pandey K. , et al. Development of PLGA-PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis. Mater Sci Eng C 2016; 59: 748-753
  • 64 El-Zawawy LA, El-Said D, Mossallam SF, Ramadan HS, Younis SS. Triclosan and triclosan-loaded liposomal nanoparticles in the treatment of acute experimental toxoplasmosis. Exp Parasitol 2015; 149: 54-64
  • 65 Prieto MJ, Bacigalupe D, Pardini O. , et al. Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. Int J Pharm 2006; 326 (1-2): 160-168
  • 66 De Souza ALR, Andreani T, Nunes FM. , et al. Loading of praziquantel in the crystal lattice of solid lipid nanoparticles: studies by DSC and SAXS. J Therm Anal Calorim 2011; 108 (01) 353-360
  • 67 Mainardes RM, Chaud MV, Gremião MPD, Evangelista RC. Development of praziquantel-loaded PLGA nanoparticles and evaluation of intestinal permeation by the everted gut sac model. J Nanosci Nanotechnol 2006; 6 (9-10): 3057-3061