Semin Thromb Hemost 2017; 43(06): 609-613
DOI: 10.1055/s-0036-1597903
Review Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Intriguing Link between the Intestinal Microbiota and Cardiovascular Disease

Giuseppe Lippi
1   Section of Clinical Biochemistry, University of Verona, Verona, Italy
,
Elisa Danese
1   Section of Clinical Biochemistry, University of Verona, Verona, Italy
,
Camilla Mattiuzzi
2   Service of Clinical Governance, General Hospital of Trento, Trento, Italy
,
Emmanuel J. Favaloro
3   Department of Haematology, Sydney Centres for Thrombosis and Haemostasis, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, NSW, Australia
› Author Affiliations
Further Information

Publication History

Publication Date:
14 March 2017 (online)

Abstract

Human microbiota is a term conventionally used to define the normal flora of microbes living in all of us, most of which are resident in the gastrointestinal tract. Despite it having been known for some time that the vast majority of intestinal bacteria exert a strong influence on human life, recent technologic breakthroughs have made it possible to more accurately characterize the host microbial communities and explore their relationship with many human diseases. Notably, the evidence accumulated over the past 10 years suggests that a reasonable relationship can now be established between gut microbiota composition and the risk of cardiovascular disease. The most convincing information comes from data generated by studies involving trimethylamine-N-oxide (TMAO)-producing bacteria. It seems now clear that these bacterial strains may actively contribute to increase the concentration of endogenous TMAO and consequently enhance the risk of ischemic and thrombotic disorders, so opening intriguing scenarios for effective prevention of cardiovascular disease by targeting the intestine by means of diet, probiotics, prebiotics, antibiotics, or even transplantation of gut microbes.

 
  • References

  • 1 Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13 (04) 260-270
  • 2 Qin J, Li R, Raes J. , et al; MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464 (7285): 59-65
  • 3 Ierardi E, Sorrentino C, Principi M, Giorgio F, Losurdo G, Di Leo A. Intestinal microbial metabolism of phosphatidylcholine: a novel insight in the cardiovascular risk scenario. Hepatobiliary Surg Nutr 2015; 4 (04) 289-292
  • 4 Wang Z, Klipfell E, Bennett BJ. , et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472 (7341): 57-63
  • 5 Romano KA, Vivas EI, Amador-Noguez D, Rey FE. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 2015; 6 (02) e02481
  • 6 Ma W, Li Y, Heianza Y. , et al. Associations of bowel movement frequency with risk of cardiovascular disease and mortality among US women. Sci Rep 2016; 6: 33005
  • 7 Choung RS, Rey E, Richard Locke III G. , et al. Chronic constipation and co-morbidities: a prospective population-based nested case-control study. United European Gastroenterol J 2016; 4 (01) 142-151
  • 8 Salmoirago-Blotcher E, Crawford S, Jackson E, Ockene J, Ockene I. Constipation and risk of cardiovascular disease among postmenopausal women. Am J Med 2011; 124 (08) 714-723
  • 9 Vermorken AJ, Cui Y, Kleerebezem R, Andrès E. Bowel movement frequency and cardiovascular mortality, a matter of fibers and oxidative stress?. Atherosclerosis 2016; 253: 278-280
  • 10 Fu J, Bonder MJ, Cenit MC. , et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res 2015; 117 (09) 817-824
  • 11 Kelly TN, Bazzano LA, Ajami NJ. , et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa Heart Study participants. Circ Res 2016; 119 (08) 956-964
  • 12 Karlsson FH, Fåk F, Nookaew I. , et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun 2012; 3: 1245
  • 13 Emoto T, Yamashita T, Kobayashi T. , et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels 2016; DOI: 10.1007/s00380-016-0841-y.
  • 14 Yin J, Liao SX, He Y. , et al. Dysbiosis of gut microbiota with reduced trimethylamine-N-oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc 2015; 4 (11) e002699
  • 15 Koren O, Spor A, Felin J. , et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A 2011; 108 (Suppl. 01) 4592-4598
  • 16 Vanharanta M, Voutilainen S, Rissanen TH, Adlercreutz H, Salonen JT. Risk of cardiovascular disease-related and all-cause death according to serum concentrations of enterolactone: Kuopio Ischaemic Heart Disease Risk Factor Study. Arch Intern Med 2003; 163 (09) 1099-1104
  • 17 Gregory JC, Buffa JA, Org E. , et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 2015; 290 (09) 5647-5660
  • 18 Tang WH, Wang Z, Levison BS. , et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368 (17) 1575-1584
  • 19 Koeth RA, Wang Z, Levison BS. , et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19 (05) 576-585
  • 20 Wang Z, Tang WH, Buffa JA. , et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 2014; 35 (14) 904-910
  • 21 Zhu W, Gregory JC, Org E. , et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165 (01) 111-124
  • 22 Org E, Mehrabian M, Lusis AJ. Unraveling the environmental and genetic interactions in atherosclerosis: central role of the gut microbiota. Atherosclerosis 2015; 241 (02) 387-399
  • 23 Ufnal M, Zadlo A, Ostaszewski R. TMAO: a small molecule of great expectations. Nutrition 2015; 31 (11-12) 1317-1323
  • 24 Tilg H. A gut feeling about thrombosis. N Engl J Med 2016; 374 (25) 2494-2496
  • 25 Liu TX, Niu HT, Zhang SY. Intestinal microbiota metabolism and atherosclerosis. Chin Med J (Engl) 2015; 128 (20) 2805-2811
  • 26 Falony G, Vieira-Silva S, Raes J. Microbiology meets big data: the case of gut microbiota-derived trimethylamine. Annu Rev Microbiol 2015; 69: 305-321
  • 27 Miao J, Ling AV, Manthena PV. , et al; Morbid Obesity Study Group. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015; 6: 6498
  • 28 Lam V, Su J, Hsu A, Gross GJ, Salzman NH, Baker JE. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS One 2016; 11 (08) e0160840
  • 29 Chen ML, Yi L, Zhang Y. , et al. Resveratrol attenuates trimethylamine-N-oxide (TMAO)-induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 2016; 7 (02) e02210-e02215
  • 30 Lippi G, Franchini M, Favaloro EJ, Targher G. Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox”. Semin Thromb Hemost 2010; 36 (01) 59-70
  • 31 Peetermans M, Verhamme P, Vanassche T. Coagulase activity by Staphylococcus aureus: a potential target for therapy?. Semin Thromb Hemost 2015; 41 (04) 433-444
  • 32 Koopen AM, Groen AK, Nieuwdorp M. Human microbiome as therapeutic intervention target to reduce cardiovascular disease risk. Curr Opin Lipidol 2016; 27 (06) 615-622