J Pediatr Genet 2017; 06(01): 003-017
DOI: 10.1055/s-0036-1593840
Review Article
Georg Thieme Verlag KG Stuttgart · New York

An Update on Molecular Diagnostic Testing of Human Imprinting Disorders

Daria Grafodatskaya
1   Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
,
Sanaa Choufani
2   Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
,
Raveen Basran
3   Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
4   Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
,
Rosanna Weksberg
2   Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
5   Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
6   Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
7   Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
8   Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
› Author Affiliations
Further Information

Publication History

11 August 2015

16 May 2016

Publication Date:
10 November 2016 (online)

Abstract

Imprinted genes are expressed in a parent of origin manner. Dysregulation of imprinted genes expression causes various disorders associated with abnormalities of growth, neurodevelopment, and metabolism. Molecular mechanisms leading to imprinting disorders and strategies for their diagnosis are discussed in this review article.

 
  • References

  • 1 Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet 2014; 15 (08) 517-530
  • 2 Kaneda M, Okano M, Hata K. , et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429 (6994): 900-903
  • 3 Bourc'his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science 2001; 294 (5551): 2536-2539
  • 4 Li X, Ito M, Zhou F. , et al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15 (04) 547-557
  • 5 Messerschmidt DM, de Vries W, Ito M, Solter D, Ferguson-Smith A, Knowles BB. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 2012; 335 (6075): 1499-1502
  • 6 Nakamura T, Arai Y, Umehara H. , et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 2007; 9 (01) 64-71
  • 7 Horsthemke B. In brief: genomic imprinting and imprinting diseases. J Pathol 2014; 232 (05) 485-487
  • 8 Plasschaert RN, Bartolomei MS. Genomic imprinting in development, growth, behavior and stem cells. Development 2014; 141 (09) 1805-1813
  • 9 Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 2014; 6 (02) a018382 . Doi: 10.1101/cshperspect.a018382
  • 10 Choufani S, Shuman C, Weksberg R. Molecular findings in Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 2013; 163C (02) 131-140
  • 11 Barlow DP. Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet 2011; 45: 379-403
  • 12 Buiting K. Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet 2010; 154C (03) 365-376
  • 13 Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet 2010; 18 (01) 8-14
  • 14 Temple IK, Mackay DJG, Docherty LE. Diabetes Mellitus, 6q24-Related Transient Neonatal. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K. , eds. GeneReviews. Seattle, WA: University of Washington; 1993
  • 15 Eggermann T, Heilsberg AK, Bens S. , et al. Additional molecular findings in 11p15-associated imprinting disorders: an urgent need for multi-locus testing. J Mol Med (Berl) 2014; 92 (07) 769-777
  • 16 Eggermann T, Elbracht M, Schröder C. , et al. Congenital imprinting disorders: a novel mechanism linking seemingly unrelated disorders. J Pediatr 2013; 163 (04) 1202-1207
  • 17 Mackay DJ, Callaway JL, Marks SM. , et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet 2008; 40 (08) 949-951
  • 18 Zuo X, Sheng J, Lau HT. , et al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem 2012; 287 (03) 2107-2118
  • 19 Boonen SE, Mackay DJ, Hahnemann JM. , et al. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci: a detailed follow-up. Diabetes Care 2013; 36 (03) 505-512
  • 20 Murdoch S, Djuric U, Mazhar B. , et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet 2006; 38 (03) 300-302
  • 21 Parry DA, Logan CV, Hayward BE. , et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet 2011; 89 (03) 451-458
  • 22 Meyer E, Lim D, Pasha S. , et al. Germline mutation in NLRP2 (NALP2) in a familial imprinting disorder (Beckwith-Wiedemann Syndrome). PLoS Genet 2009; 5 (03) e1000423 . Doi: 10.1371/journal.pgen.1000423
  • 23 Boonen SE, Hahnemann JM, Mackay D. , et al. No evidence for pathogenic variants or maternal effect of ZFP57 as the cause of Beckwith-Wiedemann Syndrome. Eur J Hum Genet 2012; 20 (01) 119-121
  • 24 Court F, Martin-Trujillo A, Romanelli V. , et al. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat 2013; 34 (04) 595-602
  • 25 Spengler S, Gogiel M, Schönherr N, Binder G, Eggermann T. Screening for genomic variants in ZFP57 in Silver-Russell syndrome patients with 11p15 epimutations. Eur J Med Genet 2009; 52 (06) 415-416
  • 26 Docherty LE, Rezwan FI, Poole RL. , et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun 2015; 6: 8086 . Doi: 10.1038/ncomms9086
  • 27 Rossignol S, Steunou V, Chalas C. , et al. The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet 2006; 43 (12) 902-907
  • 28 Tee L, Lim DH, Dias RP. , et al. Epimutation profiling in Beckwith-Wiedemann syndrome: relationship with assisted reproductive technology. Clin Epigenetics 2013; 5 (01) 23 . Doi: 10.1186/1868-7083-5-23
  • 29 Mackay DJ, Boonen SE, Clayton-Smith J. , et al. A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet 2006; 120 (02) 262-269
  • 30 Bliek J, Verde G, Callaway J. , et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet 2009; 17 (05) 611-619
  • 31 Poole RL, Docherty LE, Al Sayegh A. , et al; International Clinical Imprinting Consortium. Targeted methylation testing of a patient cohort broadens the epigenetic and clinical description of imprinting disorders. Am J Med Genet A 2013; 161A (09) 2174-2182
  • 32 Azzi S, Rossignol S, Steunou V. , et al. Multilocus methylation analysis in a large cohort of 11p15-related foetal growth disorders (Russell Silver and Beckwith Wiedemann syndromes) reveals simultaneous loss of methylation at paternal and maternal imprinted loci. Hum Mol Genet 2009; 18 (24) 4724-4733
  • 33 Begemann M, Spengler S, Kanber D. , et al. Silver-Russell patients showing a broad range of ICR1 and ICR2 hypomethylation in different tissues. Clin Genet 2011; 80 (01) 83-88
  • 34 Kannenberg K, Urban C, Binder G. Increased incidence of aberrant DNA methylation within diverse imprinted gene loci outside of IGF2/H19 in Silver-Russell syndrome. Clin Genet 2012; 81 (04) 366-377
  • 35 Turner CL, Mackay DM, Callaway JL. , et al. Methylation analysis of 79 patients with growth restriction reveals novel patterns of methylation change at imprinted loci. Eur J Hum Genet 2010; 18 (06) 648-655
  • 36 Maupetit-Méhouas S, Azzi S, Steunou V. , et al. Simultaneous hyper- and hypomethylation at imprinted loci in a subset of patients with GNAS epimutations underlies a complex and different mechanism of multilocus methylation defect in pseudohypoparathyroidism type 1b. Hum Mutat 2013; 34 (08) 1172-1180
  • 37 Perez-Nanclares G, Romanelli V, Mayo S. , et al; Spanish PHP Group. Detection of hypomethylation syndrome among patients with epigenetic alterations at the GNAS locus. J Clin Endocrinol Metab 2012; 97 (06) E1060-E1067
  • 38 Ammerpohl O, Martín-Subero JI, Richter J, Vater I, Siebert R. Hunting for the 5th base: techniques for analyzing DNA methylation. Biochim Biophys Acta 2009; 1790 (09) 847-862
  • 39 Nygren AO, Ameziane N, Duarte HM. , et al. Methylation-specific MLPA (MS-MLPA): simultaneous detection of CpG methylation and copy number changes of up to 40 sequences. Nucleic Acids Res 2005; 33 (14) e128 . Doi: 10.1093/nar/gni127
  • 40 Miller DT, Adam MP, Aradhya S. , et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010; 86 (05) 749-764
  • 41 Engel E. A new genetic concept: uniparental disomy and its potential effect, isodisomy. Am J Med Genet 1980; 6 (02) 137-143
  • 42 Hoffmann K, Heller R. Uniparental disomies 7 and 14. Best Pract Res Clin Endocrinol Metab 2011; 25 (01) 77-100
  • 43 Kearney HM, Kearney JB, Conlin LK. Diagnostic implications of excessive homozygosity detected by SNP-based microarrays: consanguinity, uniparental disomy, and recessive single-gene mutations. Clin Lab Med 2011; 31 (04) 595-613, ix ix
  • 44 Yamazawa K, Nakabayashi K, Kagami M. , et al. Parthenogenetic chimaerism/mosaicism with a Silver-Russell syndrome-like phenotype. J Med Genet 2010; 47 (11) 782-785
  • 45 Shaffer LG, Agan N, Goldberg JD, Ledbetter DH, Longshore JW, Cassidy SB. American College of Medical Genetics statement of diagnostic testing for uniparental disomy. Genet Med 2001; 3 (03) 206-211
  • 46 Kalish JM, Conlin LK, Mostoufi-Moab S. , et al. Bilateral pheochromocytomas, hemihyperplasia, and subtle somatic mosaicism: the importance of detecting low-level uniparental disomy. Am J Med Genet A 2013; 161A (05) 993-1001
  • 47 Inbar-Feigenberg M, Choufani S, Cytrynbaum C. , et al. Mosaicism for genome-wide paternal uniparental disomy with features of multiple imprinting disorders: diagnostic and management issues. Am J Med Genet A 2013; 161A (01) 13-20
  • 48 Johnson JP, Waterson J, Schwanke C, Schoof J. Genome-wide androgenetic mosaicism. Clin Genet 2014; 85 (03) 282-285
  • 49 Kalish JM, Conlin LK, Bhatti TR. , et al. Clinical features of three girls with mosaic genome-wide paternal uniparental isodisomy. Am J Med Genet A 2013; 161A (08) 1929-1939
  • 50 Strain L, Warner JP, Johnston T, Bonthron DT. A human parthenogenetic chimaera. Nat Genet 1995; 11 (02) 164-169
  • 51 Horike S, Ferreira JC, Meguro-Horike M. , et al. Screening of DNA methylation at the H19 promoter or the distal region of its ICR1 ensures efficient detection of chromosome 11p15 epimutations in Russell-Silver syndrome. Am J Med Genet A 2009; 149A (11) 2415-2423
  • 52 Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 2010; 154C (03) 343-354
  • 53 Liehr T, Ewers E, Hamid AB. , et al. Small supernumerary marker chromosomes and uniparental disomy have a story to tell. J Histochem Cytochem 2011; 59 (09) 842-848
  • 54 Baskin B, Choufani S, Chen YA. , et al. High frequency of copy number variations (CNVs) in the chromosome 11p15 region in patients with Beckwith-Wiedemann syndrome. Hum Genet 2014; 133 (03) 321-330
  • 55 Fernández-Novoa MC, Vargas MT, Vizmanos JL. , et al. [Prader-Willi syndrome large deletion on two brothers. Is this the exception that confirm the rule?]. Rev Neurol 2001; 32 (10) 935-938
  • 56 Kokkonen H, Leisti J. An unexpected recurrence of Angelman syndrome suggestive of maternal germ-line mosaicism of del(15)(q11q13) in a Finnish family. Hum Genet 2000; 107 (01) 83-85
  • 57 Aypar U, Brodersen PR, Lundquist PA, Dawson DB, Thorland EC, Hoppman N. Does parent of origin matter? Methylation studies should be performed on patients with multiple copies of the Prader-Willi/Angelman syndrome critical region. Am J Med Genet A 2014; 164A (10) 2514-2520
  • 58 Shaffer LG. Risk estimates for uniparental disomy following prenatal detection of a nonhomologous Robertsonian translocation. Prenat Diagn 2006; 26 (04) 303-307
  • 59 Kotzot D. Prenatal testing for uniparental disomy: indications and clinical relevance. Ultrasound Obstet Gynecol 2008; 31 (01) 100-105
  • 60 Dedeurwaerder S, Defrance M, Calonne E, Denis H, Sotiriou C, Fuks F. Evaluation of the Infinium methylation 450K technology. Epigenomics 2011; 3 (06) 771-784
  • 61 Choufani S, Shapiro JS, Susiarjo M. , et al. A novel approach identifies new differentially methylated regions (DMRs) associated with imprinted genes. Genome Res 2011; 21 (03) 465-476
  • 62 Docherty LE, Rezwan FI, Poole RL. , et al. Genome-wide DNA methylation analysis of patients with imprinting disorders identifies differentially methylated regions associated with novel candidate imprinted genes. J Med Genet 2014; 51 (04) 229-238
  • 63 Yamazawa K, Ogata T, Ferguson-Smith AC. Uniparental disomy and human disease: an overview. Am J Med Genet C Semin Med Genet 2010; 154C (03) 329-334
  • 64 Azzi S, Salem J, Thibaud N. , et al. A prospective study validating a clinical scoring system and demonstrating phenotypical-genotypical correlations in Silver-Russell syndrome. J Med Genet 2015; 52 (07) 446-453
  • 65 De Crescenzo A, Citro V, Freschi A. , et al. A splicing mutation of the HMGA2 gene is associated with Silver-Russell syndrome phenotype. J Hum Genet 2015; 60 (06) 287-293
  • 66 Kagami M, Mizuno S, Matsubara K. , et al. Epimutations of the IG-DMR and the MEG3-DMR at the 14q32.2 imprinted region in two patients with Silver-Russell syndrome-compatible phenotype. Eur J Hum Genet 2015; 23 (08) 1062-1067
  • 67 Prickett AR, Ishida M, Böhm S. , et al. Genome-wide methylation analysis in Silver-Russell syndrome patients. Hum Genet 2015; 134 (03) 317-332
  • 68 Brioude F, Oliver-Petit I, Blaise A. , et al. CDKN1C mutation affecting the PCNA-binding domain as a cause of familial Russell Silver syndrome. J Med Genet 2013; 50 (12) 823-830
  • 69 Eggermann T, Begemann M, Binder G, Spengler S. Silver-Russell syndrome: genetic basis and molecular genetic testing. Orphanet J Rare Dis 2010; 5: 19 . Doi: 10.1186/1750-1172-5-19
  • 70 Arboleda VA, Lee H, Parnaik R. , et al. Mutations in the PCNA-binding domain of CDKN1C cause IMAGe syndrome. Nat Genet 2012; 44 (07) 788-792
  • 71 Hamajima N, Johmura Y, Suzuki S, Nakanishi M, Saitoh S. Increased protein stability of CDKN1C causes a gain-of-function phenotype in patients with IMAGe syndrome. PLoS One 2013; 8 (09) e75137 . Doi: 10.1371/journal.pone.0075137
  • 72 de Smith AJ, Purmann C, Walters RG. , et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet 2009; 18 (17) 3257-3265
  • 73 Sahoo T, del Gaudio D, German JR. , et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet 2008; 40 (06) 719-721
  • 74 Schaaf CP, Gonzalez-Garay ML, Xia F. , et al. Truncating mutations of MAGEL2 cause Prader-Willi phenotypes and autism. Nat Genet 2013; 45 (11) 1405-1408
  • 75 Kim SJ, Miller JL, Kuipers PJ. , et al. Unique and atypical deletions in Prader-Willi syndrome reveal distinct phenotypes. Eur J Hum Genet 2012; 20 (03) 283-290
  • 76 Driscoll DJ, Miller JL, Schwartz S, Cassidy SB. Prader-Willi syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K. , eds. GeneReviews. Seattle, WA: University of Washington; 1993
  • 77 Baple EL, Poole RL, Mansour S. , et al. An atypical case of hypomethylation at multiple imprinted loci. Eur J Hum Genet 2011; 19 (03) 360-362
  • 78 Sahoo T, Bacino CA, German JR. , et al. Identification of novel deletions of 15q11q13 in Angelman syndrome by array-CGH: molecular characterization and genotype-phenotype correlations. Eur J Hum Genet 2007; 15 (09) 943-949
  • 79 Dagli AI, Williams CA. Angelman syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Fong CT, Mefford HC, Smith RJH, Stephens K. , eds. GeneReviews. Seattle, WA: University of Washington; 1993
  • 80 Ramsden SC, Clayton-Smith J, Birch R, Buiting K. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med Genet 2010; 11: 70 . Doi: 10.1186/1471-2350-11-70
  • 81 Buiting K, Gross S, Lich C, Gillessen-Kaesbach G, el-Maarri O, Horsthemke B. Epimutations in Prader-Willi and Angelman syndromes: a molecular study of 136 patients with an imprinting defect. Am J Hum Genet 2003; 72 (03) 571-577
  • 82 Hosoki K, Kagami M, Tanaka T. , et al. Maternal uniparental disomy 14 syndrome demonstrates Prader-Willi syndrome-like phenotype. J Pediatr 2009; 155 (06) 900-903.e1
  • 83 Davis E, Caiment F, Tordoir X. , et al. RNAi-mediated allelic trans-interaction at the imprinted Rtl1/Peg11 locus. Curr Biol 2005; 15 (08) 743-749
  • 84 Kagami M, Kato F, Matsubara K, Sato T, Nishimura G, Ogata T. Relative frequency of underlying genetic causes for the development of UPD(14)pat-like phenotype. Eur J Hum Genet 2012; 20 (09) 928-932
  • 85 Mitsui T, Nagasaki K, Takagi M, Narumi S, Ishii T, Hasegawa T. A family of pseudohypoparathyroidism type Ia with an 850-kb submicroscopic deletion encompassing the whole GNAS locus. Am J Med Genet A 2012; 158A (01) 261-264
  • 86 Mantovani G, de Sanctis L, Barbieri AM. , et al. Pseudohypoparathyroidism and GNAS epigenetic defects: clinical evaluation of albright hereditary osteodystrophy and molecular analysis in 40 patients. J Clin Endocrinol Metab 2010; 95 (02) 651-658
  • 87 Kelsey G. Imprinting on chromosome 20: tissue-specific imprinting and imprinting mutations in the GNAS locus. Am J Med Genet C Semin Med Genet 2010; 154C (03) 377-386
  • 88 Garin I, Mantovani G, Aguirre U. , et al; EuroPHP Consortium. European guidance for the molecular diagnosis of pseudohypoparathyroidism not caused by point genetic variants at GNAS: an EQA study. Eur J Hum Genet 2015; 23 (04) 438-444