Semin Liver Dis 2015; 35(03): 250-261
DOI: 10.1055/s-0035-1562945
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Fatty Acid and Glucose Sensors in Hepatic Lipid Metabolism: Implications in NAFLD

Michele Vacca
1   Medical Research Council - Human Nutrition Research (MRC-HNR), Cambridge, United Kingdom
2   Department of Clinical Biochemistry and University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
,
Michael Allison
3   Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University NHS Foundation Trust, United Kingdom
,
Julian L. Griffin
1   Medical Research Council - Human Nutrition Research (MRC-HNR), Cambridge, United Kingdom
4   Department of Biochemistry, University of Cambridge, United Kingdom
,
Antonio Vidal-Puig
2   Department of Clinical Biochemistry and University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge, United Kingdom
› Author Affiliations
Further Information

Publication History

Publication Date:
17 September 2015 (online)

Abstract

The term nonalcoholic fatty liver disease (NAFLD) covers a pathologic spectrum from lipid accumulation alone (simple steatosis) to steatosis with associated inflammation and fibrosis (nonalcoholic steatohepatitis [NASH]). Nonalcoholic steatohepatitis can progress to cirrhosis and potentially to hepatocellular carcinoma. Although a genetic predisposition has been highlighted, NAFLD is strongly associated with an unhealthy lifestyle and hypercaloric diet in the context of obesity and metabolic disease. The dysregulation of specific pathways (insulin signaling, mitochondrial function, fatty acid, and lipoprotein metabolism) have been linked to steatosis, but elucidating the molecular events determining evolution of the disease still requires further research before it can be translated into specific personalized interventional strategies. In this review, the authors focus on the early events of the pathophysiology of NASH, dissecting the metabolic and nutritional pathways involving fatty acids and glucose sensors that can modulate lipid accumulation in the liver, but also condition the progression to cirrhosis and hepatocellular carcinoma.

 
  • References

  • 1 Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 1999; 116 (6) 1413-1419
  • 2 Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332 (6037) 1519-1523
  • 3 Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. CMAJ 2005; 172 (7) 899-905
  • 4 Browning JD, Szczepaniak LS, Dobbins R , et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40 (6) 1387-1395
  • 5 Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114 (2) 147-152
  • 6 Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134 (5) 1369-1375
  • 7 Postic C, Girard J. The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab 2008; 34 (6 Pt 2) 643-648
  • 8 He W, Barak Y, Hevener A , et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 2003; 100 (26) 15712-15717
  • 9 Medina-Gomez G, Gray SL, Yetukuri L , et al. PPAR gamma 2 prevents lipotoxicity by controlling adipose tissue expandability and peripheral lipid metabolism. PLoS Genet 2007; 3 (4) e64
  • 10 Rodriguez-Cuenca S, Carobbio S, Vidal-Puig A. Ablation of Pparg2 impairs lipolysis and reveals murine strain differences in lipolytic responses. FASEB J 2012; 26 (5) 1835-1844
  • 11 Kempinska-Podhorodecka A, Krawczyk M, Klak M , et al. Healthy PNPLA3 risk allele carriers present with unexpected body fat composition. A study of one thousand subjects. J Gastrointestin Liver Dis 2014; 23 (1) 33-37
  • 12 Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology 2012; 142 (4) 711-725.e6
  • 13 Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome—an allostatic perspective. Biochim Biophys Acta 2010; 1801 (3) 338-349
  • 14 Musso G, Cassader M, De Michieli F, Rosina F, Orlandi F, Gambino R. Nonalcoholic steatohepatitis versus steatosis: adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism. Hepatology 2012; 56 (3) 933-942
  • 15 Kraegen EW, Clark PW, Jenkins AB, Daley EA, Chisholm DJ, Storlien LH. Development of muscle insulin resistance after liver insulin resistance in high-fat-fed rats. Diabetes 1991; 40 (11) 1397-1403
  • 16 Rolo AP, Teodoro JS, Palmeira CM. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 2012; 52 (1) 59-69
  • 17 Pessayre D, Fromenty B. NASH: a mitochondrial disease. J Hepatol 2005; 42 (6) 928-940
  • 18 Sanyal AJ, Campbell-Sargent C, Mirshahi F , et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001; 120 (5) 1183-1192
  • 19 Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK. Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 1998; 273 (25) 15639-15645
  • 20 Sanyal AJ, Chalasani N, Kowdley KV , et al; NASH CRN. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362 (18) 1675-1685
  • 21 Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115 (5) 1343-1351
  • 22 Adiels M, Taskinen MR, Packard C , et al. Overproduction of large VLDL particles is driven by increased liver fat content in man. Diabetologia 2006; 49 (4) 755-765
  • 23 Fabbrini E, Mohammed BS, Magkos F, Korenblat KM, Patterson BW, Klein S. Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease. Gastroenterology 2008; 134 (2) 424-431
  • 24 Horton JD, Shimano H, Hamilton RL, Brown MS, Goldstein JL. Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. J Clin Invest 1999; 103 (7) 1067-1076
  • 25 Duivenvoorden I, Teusink B, Rensen PC, Romijn JA, Havekes LM, Voshol PJ. Apolipoprotein C3 deficiency results in diet-induced obesity and aggravated insulin resistance in mice. Diabetes 2005; 54 (3) 664-671
  • 26 Lee HY, Birkenfeld AL, Jornayvaz FR , et al. Apolipoprotein CIII overexpressing mice are predisposed to diet-induced hepatic steatosis and hepatic insulin resistance. Hepatology 2011; 54 (5) 1650-1660
  • 27 Caron S, Verrijken A, Mertens I , et al. Transcriptional activation of apolipoprotein CIII expression by glucose may contribute to diabetic dyslipidemia. Arterioscler Thromb Vasc Biol 2011; 31 (3) 513-519
  • 28 Chen M, Breslow JL, Li W, Leff T. Transcriptional regulation of the apoC-III gene by insulin in diabetic mice: correlation with changes in plasma triglyceride levels. J Lipid Res 1994; 35 (11) 1918-1924
  • 29 Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 2008; 118 (9) 2992-3002
  • 30 Mittendorfer B, Magkos F, Fabbrini E, Mohammed BS, Klein S. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity (Silver Spring) 2009; 17 (10) 1872-1877
  • 31 Anstee QM. Animal models in nonalcoholic steatohepatitis research: utility and clinical translation. Liver Int 2011; 31 (4) 440-442
  • 32 Miyazaki M, Flowers MT, Sampath H , et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 2007; 6 (6) 484-496
  • 33 Bergheim I, Weber S, Vos M , et al. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: role of endotoxin. J Hepatol 2008; 48 (6) 983-992
  • 34 Feldstein AE, Canbay A, Guicciardi ME, Higuchi H, Bronk SF, Gores GJ. Diet associated hepatic steatosis sensitizes to Fas mediated liver injury in mice. J Hepatol 2003; 39 (6) 978-983
  • 35 Kennedy AR, Pissios P, Otu H , et al. A high-fat, ketogenic diet induces a unique metabolic state in mice. Am J Physiol Endocrinol Metab 2007; 292 (6) E1724-E1739
  • 36 Sampath H, Miyazaki M, Dobrzyn A, Ntambi JM. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. J Biol Chem 2007; 282 (4) 2483-2493
  • 37 Romestaing C, Piquet MA, Bedu E , et al. Long term highly saturated fat diet does not induce NASH in Wistar rats. Nutr Metab (Lond) 2007; 4: 4
  • 38 Newberry EP, Xie Y, Kennedy SM, Luo J, Davidson NO. Protection against Western diet-induced obesity and hepatic steatosis in liver fatty acid-binding protein knockout mice. Hepatology 2006; 44 (5) 1191-1205
  • 39 Pfluger PT, Herranz D, Velasco-Miguel S, Serrano M, Tschöp MH. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A 2008; 105 (28) 9793-9798
  • 40 Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology 2009; 49 (1) 87-96
  • 41 Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander-Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol 2008; 295 (5) G987-G995
  • 42 Koppe SW, Elias M, Moseley RH, Green RM. Trans fat feeding results in higher serum alanine aminotransferase and increased insulin resistance compared with a standard murine high-fat diet. Am J Physiol Gastrointest Liver Physiol 2009; 297 (2) G378-G384
  • 43 Obara N, Fukushima K, Ueno Y , et al. Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J Hepatol 2010; 53 (2) 326-334
  • 44 Sekiya M, Yahagi N, Matsuzaka T , et al. Polyunsaturated fatty acids ameliorate hepatic steatosis in obese mice by SREBP-1 suppression. Hepatology 2003; 38 (6) 1529-1539
  • 45 Baumgardner JN, Shankar K, Hennings L, Badger TM, Ronis MJ. A new model for nonalcoholic steatohepatitis in the rat utilizing total enteral nutrition to overfeed a high-polyunsaturated fat diet. Am J Physiol Gastrointest Liver Physiol 2008; 294 (1) G27-G38
  • 46 Denechaud PD, Bossard P, Lobaccaro JM , et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. J Clin Invest 2008; 118 (3) 956-964
  • 47 Repa JJ, Liang G, Ou J , et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev 2000; 14 (22) 2819-2830
  • 48 Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 2002; 109 (9) 1125-1131
  • 49 Li Y, Xu S, Mihaylova MM , et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13 (4) 376-388
  • 50 Takaishi K, Duplomb L, Wang MY, Li J, Unger RH. Hepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats. Proc Natl Acad Sci U S A 2004; 101 (18) 7106-7111
  • 51 Engelking LJ, Kuriyama H, Hammer RE , et al. Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. J Clin Invest 2004; 113 (8) 1168-1175
  • 52 Shimomura I, Matsuda M, Hammer RE, Bashmakov Y, Brown MS, Goldstein JL. Decreased IRS-2 and increased SREBP-1c lead to mixed insulin resistance and sensitivity in livers of lipodystrophic and ob/ob mice. Mol Cell 2000; 6 (1) 77-86
  • 53 Ide T, Shimano H, Yahagi N , et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol 2004; 6 (4) 351-357
  • 54 Towle HC, Kaytor EN, Shih HM. Regulation of the expression of lipogenic enzyme genes by carbohydrate. Annu Rev Nutr 1997; 17: 405-433
  • 55 Iizuka K, Horikawa Y. ChREBP: a glucose-activated transcription factor involved in the development of metabolic syndrome. Endocr J 2008; 55 (4) 617-624
  • 56 Dentin R, Benhamed F, Hainault I , et al. Liver-specific inhibition of ChREBP improves hepatic steatosis and insulin resistance in ob/ob mice. Diabetes 2006; 55 (8) 2159-2170
  • 57 Benhamed F, Denechaud PD, Lemoine M , et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012; 122 (6) 2176-2194
  • 58 Aarsland A, Wolfe RR. Hepatic secretion of VLDL fatty acids during stimulated lipogenesis in men. J Lipid Res 1998; 39 (6) 1280-1286
  • 59 Korchak HM. Regulation of hepatic lipogenesis. Tufts Folia Med 1962; 8: 134-143
  • 60 Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006; 126 (4) 789-799
  • 61 Mangelsdorf DJ, Thummel C, Beato M , et al. The nuclear receptor superfamily: the second decade. Cell 1995; 83 (6) 835-839
  • 62 Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors. Cell 1995; 83 (6) 841-850
  • 63 Christodoulides C, Vidal-Puig A. PPARs and adipocyte function. Mol Cell Endocrinol 2010; 318 (1-2) 61-68
  • 64 Atherton HJ, Gulston MK, Bailey NJ , et al. Metabolomics of the interaction between PPAR-alpha and age in the PPAR-alpha-null mouse. Mol Syst Biol 2009; 5: 259
  • 65 Le May C, Pineau T, Bigot K, Kohl C, Girard J, Pégorier JP. Reduced hepatic fatty acid oxidation in fasting PPARalpha null mice is due to impaired mitochondrial hydroxymethylglutaryl-CoA synthase gene expression. FEBS Lett 2000; 475 (3) 163-166
  • 66 Vu-Dac N, Gervois P, Jakel H , et al. Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor alpha activators. J Biol Chem 2003; 278 (20) 17982-17985
  • 67 Schoonjans K, Peinado-Onsurbe J, Lefebvre AM , et al. PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15 (19) 5336-5348
  • 68 Wolfrum C, Borrmann CM, Borchers T, Spener F. Fatty acids and hypolipidemic drugs regulate peroxisome proliferator-activated receptors alpha - and gamma-mediated gene expression via liver fatty acid binding protein: a signaling path to the nucleus. Proc Natl Acad Sci U S A 2001; 98 (5) 2323-2328
  • 69 Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARalpha and PPARgamma activators. J Biol Chem 1997; 272 (45) 28210-28217
  • 70 Fruchart JC. Peroxisome proliferator-activated receptor-alpha (PPARalpha): at the crossroads of obesity, diabetes and cardiovascular disease. Atherosclerosis 2009; 205 (1) 1-8
  • 71 Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98 (19) 2088-2093
  • 72 Vacca M, Degirolamo C, Mariani-Costantini R, Palasciano G, Moschetta A. Lipid-sensing nuclear receptors in the pathophysiology and treatment of the metabolic syndrome. Wiley Interdiscip Rev Syst Biol Med 2011; 3 (5) 562-587
  • 73 Shah A, Rader DJ, Millar JS. The effect of PPAR-alpha agonism on apolipoprotein metabolism in humans. Atherosclerosis 2010; 210 (1) 35-40
  • 74 Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARalpha-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 2003; 38 (1) 123-132
  • 75 Abdelmegeed MA, Yoo SH, Henderson LE, Gonzalez FJ, Woodcroft KJ, Song BJ. PPARalpha expression protects male mice from high fat-induced nonalcoholic fatty liver. J Nutr 2011; 141 (4) 603-610
  • 76 Su Q, Baker C, Christian P , et al. Hepatic mitochondrial and ER stress induced by defective PPARα signaling in the pathogenesis of hepatic steatosis. Am J Physiol Endocrinol Metab 2014; 306 (11) E1264-E1273
  • 77 Chan SM, Sun RQ, Zeng XY , et al. Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes 2013; 62 (6) 2095-2105
  • 78 Stienstra R, Mandard S, Patsouris D, Maass C, Kersten S, Müller M. Peroxisome proliferator-activated receptor alpha protects against obesity-induced hepatic inflammation. Endocrinology 2007; 148 (6) 2753-2763
  • 79 Shiri-Sverdlov R, Wouters K, van Gorp PJ , et al. Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates. J Hepatol 2006; 44 (4) 732-741
  • 80 Laurin J, Lindor KD, Crippin JS , et al. Ursodeoxycholic acid or clofibrate in the treatment of non-alcohol-induced steatohepatitis: a pilot study. Hepatology 1996; 23 (6) 1464-1467
  • 81 Fernández-Miranda C, Pérez-Carreras M, Colina F, López-Alonso G, Vargas C, Solís-Herruzo JA. A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease. Dig Liver Dis 2008; 40 (3) 200-205
  • 82 Barish GD, Narkar VA, Evans RM. PPAR delta: a dagger in the heart of the metabolic syndrome. J Clin Invest 2006; 116 (3) 590-597
  • 83 Grimaldi PA. Regulatory functions of PPARbeta in metabolism: implications for the treatment of metabolic syndrome. Biochim Biophys Acta 2007; 1771 (8) 983-990
  • 84 Berger J, Leibowitz MD, Doebber TW , et al. Novel peroxisome proliferator-activated receptor (PPAR) gamma and PPARdelta ligands produce distinct biological effects. J Biol Chem 1999; 274 (10) 6718-6725
  • 85 Coleman JD, Prabhu KS, Thompson JT , et al. The oxidative stress mediator 4-hydroxynonenal is an intracellular agonist of the nuclear receptor peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta). Free Radic Biol Med 2007; 42 (8) 1155-1164
  • 86 Wang YX, Lee CH, Tiep S , et al. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 2003; 113 (2) 159-170
  • 87 Roberts LD, Hassall DG, Winegar DA, Haselden JN, Nicholls AW, Griffin JL. Increased hepatic oxidative metabolism distinguishes the action of Peroxisome proliferator-activated receptor delta from Peroxisome proliferator-activated receptor gamma in the ob/ob mouse. Genome Med 2009; 1 (12) 115
  • 88 Barroso E, Rodríguez-Calvo R, Serrano-Marco L , et al. The PPARβ/δ activator GW501516 prevents the down-regulation of AMPK caused by a high-fat diet in liver and amplifies the PGC-1α-Lipin 1-PPARα pathway leading to increased fatty acid oxidation. Endocrinology 2011; 152 (5) 1848-1859
  • 89 Liu S, Hatano B, Zhao M , et al. Role of peroxisome proliferator-activated receptor delta/beta in hepatic metabolic regulation. J Biol Chem 2011; 286 (2) 1237-1247
  • 90 Qin X, Xie X, Fan Y , et al. Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. Hepatology 2008; 48 (2) 432-441
  • 91 Serrano-Marco L, Barroso E, El Kochairi I , et al. The peroxisome proliferator-activated receptor (PPAR) β/δ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia 2012; 55 (3) 743-751
  • 92 Nagasawa T, Inada Y, Nakano S , et al. Effects of bezafibrate, PPAR pan-agonist, and GW501516, PPARdelta agonist, on development of steatohepatitis in mice fed a methionine- and choline-deficient diet. Eur J Pharmacol 2006; 536 (1-2) 182-191
  • 93 Vu-Dac N, Chopin-Delannoy S, Gervois P , et al. The nuclear receptors peroxisome proliferator-activated receptor alpha and Rev-erbalpha mediate the species-specific regulation of apolipoprotein A-I expression by fibrates. J Biol Chem 1998; 273 (40) 25713-25720
  • 94 Tanaka T, Yamamoto J, Iwasaki S , et al. Activation of peroxisome proliferator-activated receptor delta induces fatty acid beta-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci U S A 2003; 100 (26) 15924-15929
  • 95 Leibowitz MD, Fiévet C, Hennuyer N , et al. Activation of PPARdelta alters lipid metabolism in db/db mice. FEBS Lett 2000; 473 (3) 333-336
  • 96 Oliver Jr WR, Shenk JL, Snaith MR , et al. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proc Natl Acad Sci U S A 2001; 98 (9) 5306-5311
  • 97 Wallace JM, Schwarz M, Coward P , et al. Effects of peroxisome proliferator-activated receptor alpha/delta agonists on HDL-cholesterol in vervet monkeys. J Lipid Res 2005; 46 (5) 1009-1016
  • 98 Kostadinova R, Montagner A, Gouranton E , et al. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Biosci 2012; 2 (1) 34
  • 99 Vacca M, Degirolamo C, Massafra V , et al. Nuclear receptors in regenerating liver and hepatocellular carcinoma. Mol Cell Endocrinol 2013; 368 (1-2) 108-119
  • 100 Vacca M, D'Amore S, Graziano G , et al. Clustering nuclear receptors in liver regeneration identifies candidate modulators of hepatocyte proliferation and hepatocarcinoma. PLoS ONE 2014; 9 (8) e104449
  • 101 Savage DB, Tan GD, Acerini CL , et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 2003; 52 (4) 910-917
  • 102 Barroso I, Gurnell M, Crowley VE , et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402 (6764) 880-883
  • 103 Semple RK, Chatterjee VK, O'Rahilly S. PPAR gamma and human metabolic disease. J Clin Invest 2006; 116 (3) 581-589
  • 104 Jeninga EH, Gurnell M, Kalkhoven E. Functional implications of genetic variation in human PPARgamma. Trends Endocrinol Metab 2009; 20 (8) 380-387
  • 105 Gawrieh S, Marion MC, Komorowski R , et al. Genetic variation in the peroxisome proliferator activated receptor-gamma gene is associated with histologically advanced NAFLD. Dig Dis Sci 2012; 57 (4) 952-957
  • 106 Krey G, Braissant O, L'Horset F , et al. Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol 1997; 11 (6) 779-791
  • 107 Dyson JK, Anstee QM, McPherson S. Non-alcoholic fatty liver disease: a practical approach to treatment. Frontline Gastroenterol 2014; 5 (4) 277-286
  • 108 Chao L, Marcus-Samuels B, Mason MM , et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J Clin Invest 2000; 106 (10) 1221-1228
  • 109 Maeda N, Takahashi M, Funahashi T , et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50 (9) 2094-2099
  • 110 Collino M, Aragno M, Castiglia S , et al. Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation. Br J Pharmacol 2010; 160 (8) 1892-1902
  • 111 Hevener AL, Olefsky JM, Reichart D , et al. Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin Invest 2007; 117 (6) 1658-1669
  • 112 Hevener AL, He W, Barak Y , et al. Muscle-specific Pparg deletion causes insulin resistance. Nat Med 2003; 9 (12) 1491-1497
  • 113 Norris AW, Chen L, Fisher SJ , et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest 2003; 112 (4) 608-618
  • 114 Lee YJ, Ko EH, Kim JE , et al. Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis. Proc Natl Acad Sci U S A 2012; 109 (34) 13656-13661
  • 115 Morán-Salvador E, López-Parra M, García-Alonso V , et al. Role for PPARγ in obesity-induced hepatic steatosis as determined by hepatocyte- and macrophage-specific conditional knockouts. FASEB J 2011; 25 (8) 2538-2550
  • 116 Yu S, Matsusue K, Kashireddy P , et al. Adipocyte-specific gene expression and adipogenic steatosis in the mouse liver due to peroxisome proliferator-activated receptor gamma1 (PPARgamma1) overexpression. J Biol Chem 2003; 278 (1) 498-505
  • 117 Cheng AY, Fantus IG. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ 2005; 172 (2) 213-226
  • 118 Finck BN, Kelly DP. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 2006; 116 (3) 615-622
  • 119 Leone TC, Lehman JJ, Finck BN , et al. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 2005; 3 (4) e101
  • 120 Estall JL, Kahn M, Cooper MP , et al. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 2009; 58 (7) 1499-1508
  • 121 Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009; 9 (4) 327-338
  • 122 Lin J, Yang R, Tarr PT , et al. Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 2005; 120 (2) 261-273
  • 123 Lelliott CJ, Medina-Gomez G, Petrovic N , et al. Ablation of PGC-1beta results in defective mitochondrial activity, thermogenesis, hepatic function, and cardiac performance. PLoS Biol 2006; 4 (11) e369
  • 124 Sonoda J, Mehl IR, Chong LW, Nofsinger RR, Evans RM. PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proc Natl Acad Sci U S A 2007; 104 (12) 5223-5228
  • 125 Bellafante E, Murzilli S, Salvatore L, Latorre D, Villani G, Moschetta A. Hepatic-specific activation of peroxisome proliferator-activated receptor γ coactivator-1β protects against steatohepatitis. Hepatology 2013; 57 (4) 1343-1356