RSS-Feed abonnieren
DOI: 10.1055/s-0035-1555901
Future Prospects for the Treatment of Graves’ Hyperthyroidism and Eye Disease
Publikationsverlauf
received 19. März 2015
accepted 26. Juni 2015
Publikationsdatum:
21. Juli 2015 (online)

Abstract
Although there are adequate therapies for Graves’ hyperthyroidism, mild to moderate Graves’ orbitopathy (GO) is usually treated symptomatically whereas definitive therapy is reserved for severe, vision-threatening GO. Importantly, none of the treatment regimens for Graves’ disease used today are directed at the pathogenesis of the disease. Herein, we review some aspects of what is known about the pathogenesis of these 2 major components of Graves’ disease, specifically the apparent important roles of the TSH and IGF-1 receptors, and thereafter describe future therapeutic approaches directed at these receptors. We propose that targeting these receptors will yield effective and better tolerated treatments for Graves’ disease, especially for GO.
-
References
- 1 Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 1992; 13: 596-611
- 2 Williams GR. Extrathyroidal expression of TSH receptor. Ann Endocrinol (Paris) 2011; 72: 68-73
- 3 Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases:
from adenomata to Graves disease. J Clin Invest 2005; 115: 1972-1983
MissingFormLabel
- 4 Brent GA. Clinical practice. Graves’ disease. N Engl J Med 2008; 358: 2594-2605
MissingFormLabel
- 5 Bartalena L. Graves’ orbitopathy: imperfect treatments for a rare disease. Eur Thyroid
J 2013; 2: 259-269
MissingFormLabel
- 6 Perros P, Krassas GE. Graves orbitopathy: a perspective. Nat Rev Endocrinol 2009; 5: 312-318
- 7 Feliciello A, Porcellini A, Ciullo I, Bonavolonta G, Avvedimento EV, Fenzi G. Expression
of thyrotropin-receptor mRNA in healthy and Graves’ disease retro-orbital tissue.
Lancet 1993; 342: 337-338
MissingFormLabel
- 8 Valyasevi RW, Erickson DZ, Harteneck DA, Dutton CM, Heufelder AE, Jyonouchi SC, Bahn RS. Differentiation of human orbital preadipocyte fibroblasts induces expression of functional thyrotropin receptor. J Clin Endocrinol Metab 1999; 84: 2557-2562
- 9 van Zeijl CJ, van Koppen CJ, Surovtseva OV, de Gooyer ME, Plate R, Conti P, Karstens
WJ, Timmers M, Saeed P, Wiersinga WM, Miltenburg AM, Fliers E, Boelen A. Complete
inhibition of rhTSH-, Graves’ disease IgG-, and M22-induced cAMP production in differentiated
orbital fibroblasts by a low-molecular-weight TSHR antagonist. J Clin Endocrinol Metab
2012; 97: E781-E785
MissingFormLabel
- 10 Wiersinga WM. Autoimmunity in Graves’ ophthalmopathy: the result of an unfortunate
marriage between TSH receptors and IGF-1 receptors?. J Clin Endocrinol Metab 2011;
96: 2386-2394
MissingFormLabel
- 11 Smith TJ. Insulin-like growth factor-I regulation of immune function: a potential
therapeutic target in autoimmune diseases?. Pharmacol Rev 2010; 62: 199-236
MissingFormLabel
- 12 Pritchard J, Han R, Horst N, Cruikshank WW, Smith TJ. Immunoglobulin activation of
T cell chemoattractant expression in fibroblasts from patients with Graves’ disease
is mediated through the insulin-like growth factor I receptor pathway. J Immunol 2003;
170: 6348-6354
MissingFormLabel
- 13 Tramontano D, Cushing GW, Moses AC, Ingbar SH. Insulin-like growth factor-I stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by TSH and Graves’-IgG. Endocrinology 1986; 119: 940-942
- 14 Tsui S, Naik V, Hoa N, Hwang CJ, Afifiyan NF, Sinha HA, Gianoukakis AG, Douglas RS,
Smith TJ. Evidence for an association between thyroid-stimulating hormone and insulin-like
growth factor 1 receptors: a tale of 2 antigens implicated in Graves’ disease. J Immunol
2008; 181: 4397-4405
MissingFormLabel
- 15 Krieger CC, Gershengorn MC. A modified ELISA accurately measures secretion of high molecular weight hyaluronan (HA) by Graves’ disease orbital cells. Endocrinology 2014; 155: 627-634
- 16 Smith TJ, Hoa N. Immunoglobulins from patients with Graves’ disease induce hyaluronan
synthesis in their orbital fibroblasts through the self-antigen, insulin-like growth
factor-I receptor. J Clin Endocrinol Metab 2004; 89: 5076-5080
MissingFormLabel
- 17 Krieger CC, Neumann S, Place RF, Marcus-Samuels B, Gershengorn MC. Bidirectional TSH and IGF-1 receptor cross-talk mediates stimulation of hyaluronan secretion by Graves’ disease immunoglobins. J Clin Endocrinol Metab 2014; 100: 1071-1077
- 18 Smith TJ. TSH-receptor-expressing fibrocytes and thyroid-associated ophthalmopathy.
Nat Rev Endocrinol 2015; 11: 171-181
MissingFormLabel
- 19 Mai VQ, Burch HB. A stepwise approach to the evaluation and treatment of subclinical hyperthyroidism. Endocr Pract 2012; 18: 772-780
- 20 Sundaresh V, Brito JP, Wang Z, Prokop LJ, Stan MN, Murad MH, Bahn RS. Comparative
effectiveness of therapies for Graves’ hyperthyroidism: a systematic review and network
meta-analysis. J Clin Endocrinol Metab 2013; 98: 3671-3677
MissingFormLabel
- 21 Cooper DS. Antithyroid drugs. N Engl J Med 2005; 352: 905-917
- 22 Azizi F, Yousefi V, Bahrainian A, Sheikholeslami F, Tohidi M, Mehrabi Y. Long-term continuous methimazole or radioiodine treatment for hyperthyroidism. Arch Iran Med 2012; 15: 477-484
- 23 Elbers L, Mourits M, Wiersinga WM. Outcome of very long-term treatment with antithyroid
drugs in Graves’ hyperthyroidism associated with Graves’ orbitopathy. Thyroid 2011;
21: 279-283
MissingFormLabel
- 24 Laurberg P, Berman DC, Andersen S, Bülow Pedersen I. Sustained control of Graves’
hyperthyroidism during long-term low-dose antithyroid drug therapy of patients with
severe Graves’ orbitopathy. Thyroid 2011; 21: 951-956
MissingFormLabel
- 25 Abraham P, Avenell A, McGeoch SC, Clark LF, Bevan JS. Antithyroid drug regimen for treating Graves’ hyperthyroidism. Cochrane Database Syst Rev 2010; CD003420
- 26 Bartalena L, Baldeschi L, Dickinson A, Eckstein A, Kendall-Taylor P, Marcocci C, Mourits M, Perros P, Boboridis K, Boschi A, Curro N, Daumerie C, Kahaly GJ, Krassas GE, Lane CM, Lazarus JH, Marino M, Nardi M, Neoh C, Orgiazzi J, Pearce S, Pinchera A, Pitz S, Salvi M, Sivelli P, Stahl M, von Arx G, Wiersinga WM. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol 2008; 158: 273-285
- 27 Salvi M, Vannucchi G, Campi I, Curro N, Dazzi D, Simonetta S, Bonara P, Rossi S, Sina C, Guastella C, Ratiglia R, Beck-Peccoz P. Treatment of Graves’ disease and associated ophthalmopathy with the anti-CD20 monoclonal antibody rituximab: an open study. Eur J Endocrinol 2007; 156: 33-40
- 28 Salvi M, Vannucchi G, Beck-Peccoz P. Potential utility of rituximab for Graves’ orbitopathy. J Clin Endocrinol Metab 2013; 98: 4291-4299
- 29 Salvi M, Vannucchi G, Curro N, Campi I, Covelli D, Dazzi D, Simonetta S, Guastella
C, Pignataro L, Avignone S, Beck-Peccoz P. Efficacy of B-cell targeted therapy with
rituximab in patients with active moderate to severe Graves’ orbitopathy: a randomized
controlled study. J Clin Endocrinol Metab 2015; 100: 422-431
MissingFormLabel
- 30 Stan MN, Garrity JA, Carranza Leon BG, Prabin T, Bradley EA, Bahn RS. Randomized
controlled trial of rituximab in patients with Graves’ orbitopathy. J Clin Endocrinol
Metab 2015; 100: 432-441
MissingFormLabel
- 31 Bahn RS. Emerging pharmacotherapy for treatment of Graves’ disease. Expert Rev Clin Pharmacol 2012; 5: 605-607
- 32 Smith TJ, Hegedus L, Douglas RS. Role of insulin-like growth factor-1 (IGF-1) pathway in the pathogenesis of Graves’ orbitopathy. Best Pract Res Clin Endocrinol Metab 2012; 26: 291-302
- 33 Kleinau G, Neumann S, Gruters A, Krude H, Biebermann H. Novel insights on thyroid-stimulating hormone receptor signal transduction. Endocr Rev 2013; 34: 691-724
- 34 Boutin A, Eliseeva E, Gershengorn MC, Neumann S. beta-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation. FASEB J 2014; 28: 3446-3455
- 35 Kleinau G, Biebermann H. Constitutive activities in the thyrotropin receptor: regulation and significance. Adv Pharmacol 2014; 70: 81-119
- 36 Furmaniak J, Sanders J, Rees Smith B. Blocking type TSH receptor antibodies. Autoimmune Highlights 2013; 4: 11-26
- 37 Sanders J, Miguel RN, Furmaniak J, Rees Smith B. TSH receptor monoclonal antibodies with agonist, antagonist, and inverse agonist activities. Methods Enzymol 2010; 485: 393-420
- 38 Gershengorn MC, Neumann S. Update in TSH receptor agonists and antagonists. J Clin
Endocrinol Metab 2012; 97: 4287-4292
MissingFormLabel
- 39 Sanders J, Evans M, Betterle C, Sanders P, Bhardwaja A, Young S, Roberts E, Wilmot
J, Richards T, Kiddie A, Small K, Platt H, Summerhayes S, Harris R, Reeve M, Coco
G, Zanchetta R, Chen S, Furmaniak J, Rees Smith B. A human monoclonal autoantibody
to the thyrotropin receptor with thyroid-stimulating blocking activity. Thyroid 2008;
18: 735-746
MissingFormLabel
- 40 Evans M, Sanders J, Tagami T, Sanders P, Young S, Roberts E, Wilmot J, Hu X, Kabelis
K, Clark J, Holl S, Richards T, Collyer A, Furmaniak J, Rees Smith B. Monoclonal autoantibodies
to the TSH receptor, one with stimulating activity and one with blocking activity,
obtained from the same blood sample. Clin Endocrinol (Oxf) 2010; 73: 404-412
MissingFormLabel
- 41 Neumann S, Eliseeva E, McCoy JG, Napolitano G, Giuliani C, Monaco F, Huang W, Gershengorn MC. A new small-molecule antagonist inhibits Graves’ disease antibody activation of the TSH receptor. J Clin Endocrinol Metab 2011; 96: 548-554
- 42 Neumann S, Pope A, Geras-Raaka E, Raaka BM, Bahn RS, Gershengorn MC. A drug-like antagonist inhibits thyrotropin receptor-mediated stimulation of cAMP production in Graves’ orbital fibroblasts. Thyroid 2012; 22: 839-843
- 43 van Koppen CJ, de Gooyer ME, Karstens WJ, Plate R, Conti PG, van Achterberg TA, van
Amstel MG, Brands JH, Wat J, Berg RJ, Lane JR, Miltenburg AM, Timmers CM. Mechanism
of action of a nanomolar potent, allosteric antagonist of the thyroid-stimulating
hormone receptor. Br J Pharmacol 2012; 165: 2314-2324
MissingFormLabel
- 44 Neumann S, Kleinau G, Costanzi S, Moore S, Jiang JK, Raaka BM, Thomas CJ, Krause
G, Gershengorn MC. A low-molecular-weight antagonist for the human thyrotropin receptor
with therapeutic potential for hyperthyroidism. Endocrinology 2008; 149: 5945-5950
MissingFormLabel
- 45 Neumann S, Huang W, Titus S, Krause G, Kleinau G, Alberobello AT, Zheng W, Southall
NT, Inglese J, Austin CP, Celi FS, Gavrilova O, Thomas CJ, Raaka BM, Gershengorn MC.
Small-molecule agonists for the thyrotropin receptor stimulate thyroid function in
human thyrocytes and mice. Proc Natl Acad Sci USA 2009; 106: 12471-12476
MissingFormLabel
- 46 Boutin A, Allen MD, Geras-Raaka E, Huang W, Neumann S, Gershengorn MC. Thyrotropin receptor stimulates internalization-independent persistent phosphoinositide signaling. Mol Pharmacol 2011; 80: 240-246
- 47 Neumann S, Huang W, Eliseeva E, Titus S, Thomas CJ, Gershengorn MC. A small molecule
inverse agonist for the human thyroid-stimulating hormone receptor. Endocrinology
2010; 151: 3454-3459
MissingFormLabel
- 48 Jaschke H, Neumann S, Moore S, Thomas CJ, Colson AO, Costanzi S, Kleinau G, Jiang JK, Paschke R, Raaka BM, Krause G, Gershengorn MC. A low molecular weight agonist signals by binding to the transmembrane domain of thyroid-stimulating hormone receptor (TSHR) and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). J Biol Chem 2006; 281: 9841-9844
- 49 Kleinau G, Krause G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr Rev 2009; 30: 133-151
- 50 Neumann S, Nir EA, Eliseeva E, Huang W, Marugan J, Xiao J, Dulcey AE, Gershengorn MC. A selective TSH receptor antagonist inhibits stimulation of thyroid function in female mice. Endocrinology 2014; 155: 310-314
- 51 Hamidi S, Aliesky H, Chen CR, Rapoport B, McLachlan SM. Variable suppression of serum thyroxine in female mice of different inbred strains by triiodothyronine administered in drinking water. Thyroid 2010; 20: 1157-1162
- 52 Sanders J, Evans M, Premawardhana LD, Depraetere H, Jeffreys J, Richards T, Furmaniak
J, Rees Smith B. Human monoclonal thyroid stimulating autoantibody. Lancet 2003; 362:
126-128
MissingFormLabel
- 53 Moshkelgosha S, So PW, Deasy N, Diaz-Cano S, Banga JP. Cutting edge: retrobulbar inflammation, adipogenesis, and acute orbital congestion in a preclinical female mouse model of Graves’ orbitopathy induced by thyrotropin receptor plasmid-in vivo electroporation. Endocrinology 2013; 154: 3008-3015
- 54 Wiesweg B, Johnson KT, Eckstein AK, Berchner-Pfannschmidt U. Current insights into
animal models of Graves’ disease and orbitopathy. Horm Metab Res 2013; 45: 549-555
MissingFormLabel
- 55 Turcu AF, Kumar S, Neumann S, Coenen M, Iyer S, Chiriboga P, Gershengorn MC, Bahn
RS. A small molecule antagonist inhibits thyrotropin receptor antibody-induced orbital
fibroblast functions involved in the pathogenesis of Graves ophthalmopathy. J Clin
Endocrinol Metab 2013; 98: 2153-2159
MissingFormLabel
- 56 LeRoith D, Werner H, Beitner-Johnson D, Roberts Jr CT. Molecular and cellular aspects
of the insulin-like growth factor I receptor. Endocr Rev 1995; 16: 143-163
MissingFormLabel
- 57 Weightman DR, Perros P, Sherif IH, Kendall-Taylor P. Autoantibodies to IGF-1 binding
sites in thyroid associated ophthalmopathy. Autoimmunity 1993; 16: 251-257
MissingFormLabel
- 58 Gianoukakis AG, Douglas RS, King CS, Cruikshank WW, Smith TJ. Immunoglobulin G from patients with Graves’ disease induces interleukin-16 and RANTES expression in cultured human thyrocytes: a putative mechanism for T-cell infiltration of the thyroid in autoimmune disease. Endocrinology 2006; 147: 1941-1949
- 59 Varewijck AJ, Boelen A, Lamberts SW, Fliers E, Hofland LJ, Wiersinga WM, Janssen
JA. Circulating IgGs may modulate IGF-I receptor stimulating activity in a subset
of patients with Graves’ ophthalmopathy. J Clin Endocrinol Metab 2013; 98: 769-776
MissingFormLabel
- 60 Minich WB, Dehina N, Welsink T, Schwiebert C, Morgenthaler NG, Kohrle J, Eckstein
A, Schomburg L. Autoantibodies to the IGF1 receptor in Graves’ orbitopathy. J Clin
Endocrinol Metab 2013; 98: 752-760
MissingFormLabel
- 61 Krassas GE, Pontikides N, Kaltsas T, Dumas A, Frystyk J, Chen JW, Flyvbjerg A. Free and total insulin-like growth factor (IGF)-I, -II, and IGF binding protein-1, -2, and -3 serum levels in patients with active thyroid eye disease. J Clin Endocrinol Metab 2003; 88: 132-135
- 62 Schnitzer T, Kuenkele KP, Rebers F, Van Vugt M, Klein C, Lanzendorfer M, Mundigl O, Parren PWHI, van de Winkel JGJV, Schumacher R. Characterization of a recombinant, fully human monoclonal antibody directed against the human insulin-like growth factor-1 receptor. EJC Suppl 2006; 4: 66-67
- 63 Chen H, Mester T, Raychaudhuri N, Kauh CY, Gupta S, Smith TJ, Douglas RS. Teprotumumab an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes. J Clin Endocrinol Metab 2014; 99: E1635-E1640
- 64 Mulvihill MJ, Cooke A, Rosenfeld-Franklin M, Buck E, Foreman K, Landfair D, O’Connor M, Pirritt C, Sun Y, Yao Y, Arnold LD, Gibson NW, Ji QS. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med Chem 2009; 1: 1153-1171
- 65 Jones RL, Kim ES, Nava-Parada P, Alam S, Johnson FM, Stephens AW, Simantov R, Poondru S, Gedrich R, Lippman SM, Kaye SB, Carden CP. Phase I study of intermittent oral dosing of the insulin-like growth factor-1 and insulin receptors inhibitor OSI-906 in patients with advanced solid tumors. Clin Cancer Res 2015; 21: 693-700
- 66 Puzanov I, Lindsay CR, Goff L, Sosman J, Gilbert J, Berlin J, Poondru S, Simantov R, Gedrich R, Stephens A, Chan E, Evans TR. A phase I study of continuous oral dosing of OSI-906, a dual inhibitor of insulin-like growth factor-1 and insulin receptors, in patients with advanced solid tumors. Clin Cancer Res 2015; 21: 701-711
- 67 Tognon CE, Sorensen PH. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16: 33-48