J Neurol Surg A Cent Eur Neurosurg 2015; 76(06): 456-465
DOI: 10.1055/s-0035-1551826
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Clinical, Radiologic, and Legal Significance of “Extensor Response” in Posttraumatic Coma

Raimund Firsching
1   Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum, Klinik für Neurochirurgie, Magdeburg, Germany
,
Dieter Woischneck
2   Klinikum Landshut, Klinik für Neurochirurgie, Landshut, Germany
,
Alexander Langejürgen
1   Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum, Klinik für Neurochirurgie, Magdeburg, Germany
,
Andreas Parreidt
1   Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum, Klinik für Neurochirurgie, Magdeburg, Germany
,
Imre Bondar
1   Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum, Klinik für Neurochirurgie, Magdeburg, Germany
,
Martin Skalej
3   Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum, Institut für Neuroradiologie, Magdeburg, Germany
,
Friedrich Röhl
4   Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum, Institut für Biometrie und Medizinische Informatik, Magdeburg, Germany
,
Benjamin Voellger
1   Otto-von-Guericke-Universität Magdeburg, Universitätsklinikum, Klinik für Neurochirurgie, Magdeburg, Germany
5   Universitätsklinikum Marburg, Klinik für Neurochirurgie, Marburg, Germany
› Author Affiliations
Further Information

Publication History

04 August 2014

06 February 2015

Publication Date:
27 July 2015 (online)

Preview

Abstract

Objective The timely detection of neurologic deterioration can be critical for the survival of a neurosurgical patient following head injury. Because little reliable evidence is available on the prognostic value of the clinical sign “extensor response” in comatose posttraumatic patients, we investigated the correlation of this clinical sign with outcome and with early radiologic findings from magnetic resonance imaging (MRI).

Methods This retrospective analysis of prospectively obtained data included 157 patients who had remained in a coma for a minimum of 24 hours after traumatic brain injury. All patients received a 1.5-T MRI within 10 days (median: 2 days) of the injury. The correlations between clinical findings 12 and 24 hours after the injury—in particular, extensor response and pupillary function, MRI findings, and outcome after 1 year—were investigated. Statistical analysis included contingency tables, Fisher exact test, odds ratios (ORs) with confidence intervals (CIs), and weighted κ values.

Results There were 48 patients with extensor response within the first 24 hours after the injury. Patients with extensor response (World Federation of Neurosurgical Societies coma grade III) statistically were significantly more likely to harbor MRI lesions in the brainstem when compared with patients in a coma who had no further deficiencies (coma grade I; p = 0.0004 by Fisher exact test, OR 10.8 with 95% CI, 2.7–42.5) and patients with unilateral loss of pupil function (coma grade II; p = 0.0187, OR 2.8 with 95% CI, 1.2–6.5). The correlation of brainstem lesions as found by MRI and outcome according to the Glasgow Outcome Scale after 1 year was also highly significant (p ≤ 0.016).

Conclusion The correlation of extensor response and loss of pupil function with an unfavorable outcome and with brainstem lesions revealed by MRI is highly significant. Their sudden onset may be associated with the sudden onset of brainstem dysfunction and should therefore be regarded as one of the most fundamental warning signs in the clinical monitoring of comatose patients.