Planta Med 2015; 81(17): 1582-1591
DOI: 10.1055/s-0035-1546246
Mini Reviews
Georg Thieme Verlag KG Stuttgart · New York

Solvent System Selection Strategies in Countercurrent Separation

Yang Liu
1   Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
,
J. Brent Friesen
1   Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
2   Physical Sciences Department, Rosary College of Arts and Sciences, Dominican University, River Forest, Illinois, United States
,
James B. McAlpine
1   Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
3   Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
,
Guido F. Pauli
1   Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
3   Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 04. Oktober 2014
revised 09. März 2015

accepted 03. Juni 2015

Publikationsdatum:
21. September 2015 (online)

Abstract

The majority of applications in countercurrent and centrifugal partition chromatography, collectively known as countercurrent separation, are dedicated to medicinal plant and natural product research. In countercurrent separation, the selection of the appropriate solvent system is of utmost importance as it is the equivalent to the simultaneous choice of column and eluent in liquid chromatography. However, solvent system selection is often laborious, involving extensive partition and/or analytical trials. Therefore, simplified solvent system selection strategies that predict the partition coefficients and, thus, analyte behavior are in high demand and may advance both the science of countercurrent separation and its applications. The last decade of solvent system selection theory and applications are critically reviewed, and strategies are classified according to their data input requirements. This offers the practitioner an up-to-date overview of rationales and methods for choosing an efficient solvent system, provides a perspective regarding their accuracy, reliability, and practicality, and discusses the possibility of combining multiple methods for enhanced prediction power.

Supporting Information

 
  • References

  • 1 Ito Y. High-speed countercurrent chromatography. Nature 1987; 326: 419-420
  • 2 Hopmann E, Arlt W, Minceva M. Solvent system selection in counter-current chromatography using conductor-like screening model for real solvents. J Chromatogr A 2011; 1218: 242-250
  • 3 Eromosele O, Bo S, Jia H, Ping L. Preparative isolation and purification of glyceollins from soy bean elicited with Aspergillus sojae by high-speed countercurrent chromatography. J Chromatogr Sep Technol 2012; 3: 1-7
  • 4 Friesen JB, Pauli GF. Rational development of solvent system families in counter-current chromatography. J Chromatogr A 2007; 1151: 51-59
  • 5 Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J Chromatogr A 2005; 1065: 145-168
  • 6 Inoue K, Hattori Y, Hino T, Oka H. An approach to on-line electrospray mass spectrometric detection of polypeptide antibiotics of enramycin for high-speed counter-current chromatographic separation. J Pharm Biomed Anal 2010; 51: 1154-1160
  • 7 Yanagida A, Shoji A, Shibusawa Y, Shindo H, Tagashira M, Ikeda M, Ito Y. Analytical separation of tea catechins and food-related polyphenols by high-speed counter-current chromatography. J Chromatogr A 2006; 1112: 195-201
  • 8 Shibusaw Y, Yanagida A, Isozaki M, Shindo H, Ito Y. Separation of apple procyanidins into different degrees of polymerization by high-speed counter-current chromatography. J Chromatogr A 2001; 915: 253-257
  • 9 Zhang M, Ignatova S, Hu P, Liang Q, Wang Y, Luo G, Jun FW, Sutherland I. Development of a strategy and process parameters for a green process in counter-current chromatography: purification of tanshinone IIA and cryptotanshinone from Salvia miltiorrhiza Bunge as a case study. J Chromatogr A 2011; 1218: 6031-6037
  • 10 Chen L, Zhang Q, Yang G, Fan L, Tang J, Garrard I, Ignatova S, Fisher D, Sutherland IA. Rapid purification and scale-up of honokiol and magnolol using high-capacity high-speed counter-current chromatography. J Chromatogr A 2007; 1142: 115-122
  • 11 Luo H, Peng M, Ye H, Chen L, Peng A, Tang M, Zhang F, Shi J. Predictable and linear scale-up of four phenolic alkaloids separation from the roots of Menispermum dauricum using high-performance counter-current chromatography. J Chromatogr B 2010; 878: 1929-1933
  • 12 Cicek SS, Schwaiger S, Ellmerer EP, Stuppner H. Development of a fast and convenient method for the isolation of triterpene saponins from Actaea racemosa by high-speed countercurrent chromatography coupled with evaporative light scattering detection. Planta Med 2010; 76: 467-473
  • 13 Yuan Y, Wang B, Chen L, Luo H, Fisher D, Sutherland IA, Wei Y. How to realize the linear scale-up process for rapid purification using high-performance counter-current chromatography. J Chromatogr A 2008; 1194: 192-198
  • 14 Yao Y, Cheng Z, Ye H, Xie Y, He J, Tang M, Shen T, Wang J, Zhou Y, Lu Z, Luo F, Chen L, Yu L, Yang JL, Peng A, Wei Y. Preparative isolation and purification of anti-tumor agent ansamitocin P-3 from fermentation broth of Actinosynnema pretiosum using high-performance counter-current chromatography. J Sep Sci 2010; 33: 1331-1337
  • 15 Luo Y, Xu Y, Chen L, Luo H, Peng C, Fu J, Chen H, Peng A, Ye H, Xie D, Fu A, Shi J, Yang S, Wei Y. Preparative purification of anti-tumor derivatives of honokiol by high-speed counter-current chromatography. J Chromatogr A 2008; 1178: 160-165
  • 16 Ye H, Chen L, Li Y, Peng A, Fu A, Song H, Tang M, Luo H, Luo Y, Xu Y, Shi J, Wei Y. Preparative isolation and purification of three rotenoids and one isoflavone from the seeds of Millettia pachycarpa Benth by high-speed counter-current chromatography. J Chromatogr A 2008; 1178: 101-107
  • 17 Inoue K, Nomura C, Ito S, Nagatsu A, Hino T, Oka H. Purification of curcumin, demethoxycurcumin, and bisdemethoxycurcumin by high-speed countercurrent chromatography. J Agric Food Chem 2008; 56: 9328-9336
  • 18 Wagenaar FL, Hochlowski JE, Pan JY, Tu NR, Searle PA. Purification of high-throughput organic synthesis libraries by counter-current chromatography. J Chromatogr A 2009; 1216: 4154-4160
  • 19 Garrard IJ. Simple approach to the development of a CCC solvent selection protocol suitable for automation. J Liq Chromatogr Relat Technol 2005; 28: 1923-1935
  • 20 Leitao GG, de Souza PA, Moraes AA, Brown L. Step-gradient CCC separation of phenylpropanoid and iridoid glycosides from roots of Stachytarpheta cayennensis (Rich.) vahl. J Liq Chromatogr Relat Technol 2005; 28: 2053-2060
  • 21 He K, Ye X, Li X, Chen H, Yuan L, Deng Y, Chen X, Li X. Separation of two constituents from purple sweet potato by combination of silica gel column and high-speed counter-current chromatography. J Chromatogr B 2012; 881–882: 49-54
  • 22 Dang YY, Li XC, Zhang QW, Li SP, Wang YT. Preparative isolation and purification of six volatile compounds from essential oil of Curcuma wenyujin using high-performance centrifugal partition chromatography. J Sep Sci 2010; 33: 1658-1664
  • 23 Liu Y, Chen SN, McAlpine JB, Klein LL, Friesen JB, Lankin DC, Pauli GF. Quantification of a botanical negative marker without an identical standard: ginkgotoxin in Ginkgo biloba . J Nat Prod 2014; 77: 611-617
  • 24 Qiu F, Friesen JB, McAlpine JB, Pauli GF. Design of countercurrent separation of Ginkgo biloba terpene lactones by nuclear magnetic resonance. J Chromatogr A 2012; 1242: 26-34
  • 25 Yeh JC, Garrard IJ, Cho CW, Annie Bligh SW, Lu GH, Fan TP, Fisher D. Bioactivity-guided fractionation of the volatile oil of Angelica sinensis radix designed to preserve the synergistic effects of the mixture followed by identification of the active principles. J Chromatogr A 2012; 1236: 132-138
  • 26 Sutherland IA, Fisher D. Role of counter-current chromatography in the modernisation of Chinese herbal medicines. J Chromatogr A 2009; 1216: 740-753
  • 27 Sutherland IA, Brown L, Graham AS, Guillon GG, Hawes D, Janaway L, Whiteside R, Wood P. Industrial scale-up of countercurrent chromatography: predictive scale-up. J Chromatogr Sci 2001; 39: 21-28
  • 28 Wood P, Ignatova S, Janaway L, Keay D, Hawes D, Garrard I, Sutherland IA. Counter-current chromatography separation scaled up from an analytical column to a production column. J Chromatogr A 2007; 1151: 5-30
  • 29 Ignatova S, Wood P, Hawes D, Janaway L, Keay D, Sutherland I. Feasibility of scaling from pilot to process scale. J Chromatogr A 2007; 1151: 20-24
  • 30 Faure KM, Nazim M, Meucci J, Berthod A. Solvent selection in countercurrent chromatography using small-volume hydrostatic columns. LC GC N Am 2013; 31: 132-143
  • 31 Hostettmann K, Hostettmann-Kaldas M, Sticher O. Application of droplet counter-current chromatography to the isolation of natural products. J Chromatogr A 1979; 186: 529-534
  • 32 Marston A, Hostettmann K. Developments in the application of counter-current chromatography to plant analysis. J Chromatogr A 2006; 1112: 181-194
  • 33 Friesen JB, Pauli GF. G.U.E.S.S. – A generally useful estimate of solvent systems for CCC. J Liq Chromatogr Relat Technol 2005; 28: 2777-2806
  • 34 Yang C, Yang Y, Aisa HA, Xin X, Ma H, Yili A, Zhao Y. Bioassay-guided isolation of antioxidants from Astragalus altaicus by combination of chromatographic techniques. J Sep Sci 2012; 35: 977-983
  • 35 Chen Y, Schwack W. High-performance thin-layer chromatography screening of multi class antibiotics in animal food by bioluminescent bioautography and electrospray ionization mass spectrometry. J Chromatogr A 2014; 1356: 249-257
  • 36 Ignatova S, Sumner N, Colclough N, Sutherland I. Gradient elution in counter-current chromatography: a new layout for an old path. J Chromatogr A 2011; 1218: 6053-6060
  • 37 Pauli GF, Pro SM, Friesen JB. Countercurrent separation of natural products. J Nat Prod 2008; 71: 1489-1508
  • 38 Han QB, Wong L, Yang NY, Song JZ, Qiao CF, Yiu H, Ito Y, Xu HX. A simple method to optimize the HSCCC two-phase solvent system by predicting the partition coefficient for target compound. J Sep Sci 2008; 31: 1189-1194
  • 39 Zhang S, Wang X, Ouyang F, Su Z, Wang C, Gu M. Separation and purification of dl-tetrahydropalmatine from Corydalis yanhusuo W. T. Wang by HSCCC with a new solvent system screening method. J Liq Chromatogr Relat Technol 2008; 31: 2632-2642
  • 40 Dubant S, Mathews B, Higginson P, Crook R, Snowden M, Mitchell J. Practical solvent system selection for counter-current separation of pharmaceutical compounds. J Chromatogr A 2008; 1207: 190-192
  • 41 Renon H, Prausnitz JM. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J 2004; 14: 135-144
  • 42 Chen CC, Song Y. Solubility modeling with a nonrandom two-liquid segment activity coefficient model. Ind Eng Chem Res 2004; 43: 8354-8362
  • 43 Chen CC, Crafts PA. Correlation and prediction of drug molecule solubility in mixed solvent systems with the nonrandom two-liquid segment activity coefficient (NRTL−SAC) model. Ind Eng Chem Res 2006; 45: 4816-4824
  • 44 Chen J, Yu Y, Li Z. Accurate calculation for liquid–liquid equilibria of typical solvent systems used in CCC. J Liq Chromatogr Relat Technol 2005; 28: 1937-1946
  • 45 Ren DB, Yang ZH, Liang YZ, Ding Q, Chen C, Ouyang ML. Correlation and prediction of partition coefficient using nonrandom two-liquid segment activity coefficient model for solvent system selection in counter-current chromatography separation. J Chromatogr A 2013; 1301: 10-18
  • 46 Ren DB, Qin YH, Yun YH, Lu HM, Chen XQ, Liang YZ. Using nonrandom two-liquid model for solvent system selection in counter-current chromatography. J Chromatogr A 2014; 1355: 80-85
  • 47 Qian J, Poole CF. Distribution model for Folch partition. J Sep Sci 2007; 30: 2326-2331
  • 48 Ghose AK, Viswanadhan VN, Wendoloski JJ. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods. J Phys Chem A 1998; 102: 3762-3772
  • 49 Moriguchi I, Hirono S, Liu Q, Nakagome I, Matsushita Y. Simple method of calculating octanol water partition-coefficient. Chem Pharm Bull 1992; 40: 127-130
  • 50 Stewart JP. MOPAC: a semiempirical molecular orbital program. J Comput Aided Mol Des 1990; 4: 1-105
  • 51 Klamt A. Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J Phys Chem A 1995; 99: 2224-2235
  • 52 Hopmann E, Frey A, Minceva M. A priori selection of the mobile and stationary phase in centrifugal partition chromatography and counter-current chromatography. J Chromatogr A 2012; 1238: 68-76
  • 53 Goll J, Frey A, Minceva M. Study of the separation limits of continuous solid support free liquid-liquid chromatography: separation of capsaicin and dihydrocapsaicin by centrifugal partition chromatography. J Chromatogr A 2013; 1284: 59-68
  • 54 Frey A, Hopmann E, Minceva M. Selection of biphasic liquid systems in liquid-liquid chromatography using predictive thermodynamic models. Chem Eng Technol 2014; 37: 1663-1674
  • 55 Friesen JB, Ahmed S, Pauli GF. Qualitative and quantitative evaluation of solvent systems for countercurrent separation. J Chromatogr A 2015; 1377: 55-63
  • 56 Faure K, Bouju E, Suchet P, Berthod A. Use of limonene in countercurrent chromatography: a green alkane substitute. Anal Chem 2013; 85: 4644-4650
  • 57 Englert M, Vetter W. Solvent systems with n-hexane and/or cyclohexane in countercurrent chromatography: Physico-chemical parameters and their impact on the separation of alkyl hydroxybenzoates. J Chromatogr A 2014; 1342: 54-62
  • 58 Romero-Gonzalez RR, Verpoorte R. Salting-out gradients in centrifugal partition chromatography for the isolation of chlorogenic acids from green coffee beans. J Chromatogr A 2009; 1216: 4245-4251
  • 59 Peng A, Li R, Hu J, Chen L, Zhao X, Luo H, Ye H, Yuan Y, Wei Y. Flow rate gradient high-speed counter-current chromatography separation of five diterpenoids from Triperygium wilfordii and scale-up. J Chromatogr A 2008; 1200: 129-135
  • 60 Han QB, Yu T, Lai F, Zhou Y, Feng C, Wang WN, Fu XH, Lau CB, Luo KQ, Xu HX, Sun HD, Fung KP, Leung PC. Quick identification of apoptosis inducer from Isodon eriocalyx by a drug discovery platform composed of analytical high-speed counter-current chromatography and the fluorescence-based caspase-3 biosensor detection. Talanta 2010; 82: 1521-1527
  • 61 Inoue K, Baba E, Hino T, Oka H. A strategy for high-speed countercurrent chromatography purification of specific antioxidants from natural products based on on-line HPLC method with radical scavenging assay. Food Chem 2012; 134: 2276-2282
  • 62 Wang X, Wang Y, Geng Y, Li F, Zheng C. Isolation and purification of honokiol and magnolol from cortex Magnoliae officinalis by high-speed counter-current chromatography. J Chromatogr A 2004; 1036: 171-175
  • 63 Tong S, Yan J, Guan YX, Fu Y, Ito Y. Separation of alpha-cyclohexylmandelic acid enantiomers using biphasic chiral recognition high-speed counter-current chromatography. J Chromatogr A 2010; 1217: 3044-3052
  • 64 Maier T, Sanzenbacher S, Kammerer DR, Berardini N, Conrad J, Beifuss U, Carle R, Schieber A. Isolation of hydroxycinnamoyltartaric acids from grape pomace by high-speed counter-current chromatography. J Chromatogr A 2006; 1128: 61-67
  • 65 Hammann S, Tillmann U, Schröder M, Vetter W. Profiling the fatty acids from a strain of the microalgae Alexandrium tamarense by means of high-speed counter-current chromatography and gas chromatography coupled with mass spectrometry. J Chromatogr A 2013; 1312: 93-103
  • 66 Schröder M, Vetter W. High-speed counter-current chromatographic separation of phytosterols. Anal Bioanal Chem 2011; 400: 3615-3623
  • 67 Skalicka-Wozniak K, Mroczek T, Garrard I, Glowniak K. Isolation of the minor and rare constituents from fruits of Peucedanum alsaticum L. using high-performance counter-current chromatography. J Sep Sci 2012; 35: 790-797
  • 68 Skalicka-Wozniak K, Walasek M, Ludwiczuk A, Glowniak K. Isolation of terpenoids from Pimpinella anisum essential oil by high-performance counter-current chromatography. J Sep Sci 2013; 36: 2611-2614
  • 69 Wei Y, Zhang T, Xu G, Ito Y. Application of analytical and preparative high-speed counter-current chromatography for separation of lycopene from crude extract of tomato paste. J Chromatogr A 2001; 929: 169-173
  • 70 Li J, Zhang X, Yu Q, Fu X, Wang W. One-step separation of four flavonoids from Herba Salviae plbeiae by HSCCC. J Chromatogr Sci 2014; 52: 1288-1293
  • 71 Wei Y, Xie Q, Fisher D, Sutherland IA. Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography. J Chromatogr A 2011; 1218: 6206-6211
  • 72 Wei Y, Xie Q, Ito Y. Preparative separation of axifolin-3-glucoside, hyperoside and amygdalin from plant extracts by high-speed countercurrent chromatography. J Liq Chromatogr Relat Technol 2009; 32: 1010-1022
  • 73 Chen LJ, Song H, Lan XQ, Games DE, Sutherland IA. Comparison of high-speed counter-current chromatography instruments for the separation of the extracts of the seeds of Oroxylum indicum . J Chromatogr A 2005; 1063: 241-245
  • 74 Sporna-Kucab A, Ignatova S, Garrard I, Wybraniec S. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography. J Chromatogr B 2013; 941: 54-61
  • 75 Jerz G, Gebers N, Szot D, Szaleniec M, Winterhalter P, Wybraniec S. Separation of amaranthine-type betacyanins by ion-pair high-speed countercurrent chromatography. J Chromatogr A 2014; 1344: 42-50
  • 76 Deng J, Xiao X, Li G, Ruan G. Application of microwave-assisted extraction coupled with high-speed counter-current chromatography for separation and purification of dehydrocavidine from Corydalis saxicola Bunting. Phytochem Anal 2009; 20: 498-502
  • 77 Yang F, Ito Y. Preparative separation of lappaconitine, ranaconitine, N-deacetyllappaconitine and N-deacetylranaconitine from crude alkaloids of sample Aconitum sinomontanum Nakai by high-speed counter-current chromatography. J Chromatogr A 2002; 943: 219-225
  • 78 Zhang M, Ignatova S, Liang Q, Wu Jun F, Sutherland I, Wang Y, Luo G. Rapid and high-throughput purification of salvianolic acid B from Salvia miltiorrhiza Bunge by high-performance counter-current chromatography. J Chromatogr A 2009; 1216: 3869-3873
  • 79 Wei Y, Zhang TY, Wu KY. Separation of eleutheroside E from crude extract of Radix Acanthopanacis senticosus by analytical and preparative high-speed countercurrent chromatography. Se Pu 2002; 20: 543-545
  • 80 Wei Y, Ito Y. Preparative isolation of imperatorin, oxypeucedanin and isoimperatorin from traditional Chinese herb “bai zhi” Angelica dahurica (Fisch. ex Hoffm) Benth. et Hook using multidimensional high-speed counter-current chromatography. J Chromatogr A 2006; 1115: 112-117
  • 81 Ma X, Tu P, Chen Y, Zhang T, Wei Y, Ito Y. Preparative isolation and purification of isoflavan and pterocarpan glycosides from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. J Chromatogr A 2004; 1023: 311-315
  • 82 Zhou T, Fan G, Hong Z, Chai Y, Wu Y. Large-scale isolation and purification of geniposide from the fruit of Gardenia jasminoides Ellis by high-speed counter-current chromatography. J Chromatogr A 2005; 1100: 76-80
  • 83 Wei Y, Zhang T, Ito Y. Preparative separation of rhein from Chinese traditional herb by repeated high-speed counter-current chromatography. J Chromatogr A 2003; 1017: 125-130
  • 84 Cao XL, Xu YT, Zhang GM, Xie SM, Dong YM, Ito Y. Purification of coenzyme Q10 from fermentation extract: high-speed counter-current chromatography versus silica gel column chromatography. J Chromatogr A 2006; 1127: 92-96