Planta Med 2015; 81(12/13): 1213-1220
DOI: 10.1055/s-0035-1546207
Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Influence of Processing on the Content of Toxic Carboxyatractyloside and Atractyloside and the Microbiological Status of Xanthium sibiricum Fruits (Cangʼerzi)[*]

Stefanie Nikles
1   Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
,
Heidi Heuberger
2   Bavarian State Research Center for Agriculture (LfL), Institute of Crop Science and Plant Breeding, Freising, Germany
,
Eberhard Hilsdorf
3   HerbaSinica Hilsdorf GmbH, Rednitzhembach, Germany
,
Robert Schmücker
4   PhytoLab GmbH & Co. KG, Vestenbergsgreuth, Germany
,
Rebecca Seidenberger
2   Bavarian State Research Center for Agriculture (LfL), Institute of Crop Science and Plant Breeding, Freising, Germany
,
Rudolf Bauer
1   Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Graz, Austria
› Author Affiliations
Further Information

Publication History

received 12 March 2015
revised 22 May 2015

accepted 25 May 2015

Publication Date:
19 August 2015 (online)

Abstract

The dried ripe fruits of Xanthium sibiricum (Cangʼerzi) are used in traditional Chinese medicine for the treatment of nasal congestion, nasal discharge, allergic rhinitis, sinusitis, and wind-cold headaches. Carboxyatractyloside and atractyloside are important constituents of the fruits because these diterpenoid glycosides are responsible for their toxicity. In order to evaluate procedures for reducing the amount of the more toxic carboxyatractyloside, the fruits were dried and heated with different methods. Carboxyatractyloside and atractyloside were analysed by a new reversed-phase high-performance liquid chromatographic method using liquid chromatography-diode array detector-tandem mass spectrometry analysis. The results revealed that temperature and drying methods have a strong influence on the content of carboxyatractyloside and atractyloside. Fruits which were treated at higher temperatures showed a lower content of carboxyatractyloside and an increased content of atractyloside, which is 50 times less toxic. This indicates that the roasting process can reduce toxicity effectively. The microbiological colonisation of Xanthium fruits is also reduced by roasting and by drying above 100 °C. For the safe use of Cangʼerzi, the effect of processing should be monitored and analysis of carboxyatractyloside and atractyloside should be obligatory in quality control.

* Dedicated to Professor Dr. Dr. h. c. mult. Adolf Nahrstedt on the occasion of his 75th birthday.


Supporting Information

 
  • References

  • 1 Anonymous Pharmacopoeia of the Peopleʼs Republic of China, Volume I. Beijing: China Medical Science Press; 2010: 461
  • 2 Wink M, van Wyk BE, Wink C. Handbuch der giftigen und psychoaktiven Pflanzen. Stuttgart: Wissenschaftliche Verlagsgesellschaft mbH; 2008: 419
  • 3 Roth L, Daunderer M, Kormann K. Giftpflanzen Pflanzengifte: Vorkommen, Wirkung, Therapie – Allergische und phototoxische Reaktionen. 4. Aufl.. Landsberg: Ecomed Verlagsgesellschaft; 1994: 738
  • 4 An HJ, Jeong HJ, Lee EH, Kim YK, Hwang QJ, Yoo SJ, Hong SH, Kim HM. Xanthii Fructus inhibits inflammatory responses in LPS-stimulated mouse peritoneal macrophages. Inflammation 2004; 28: 263-270
  • 5 Hong SH, Jeong HJ, Kim HM. Inhibitory effects of Xanthii Fructus extract on mast cell-mediated allergic reaction in murine model. J Ethnopharmacol 2003; 88: 229-234
  • 6 Song MY, Kim EK, Lee HJ, Park JW, Ryu DG, Kwon KB, Park BH. Fructus Xanthii extract protects against cytokine-induced damage in pancreatic s-cells through suppression of Nf-KB activation. Int J Mol Med 2009; 23: 547-553
  • 7 Anonymous Dictionary of Chinese Materia Medica. Shanghai: Shanghai Science and Technology Press; 1985: 1071
  • 8 Isao A, Saori G, Tsutomu H, Sansei N, Takuo O. 1, 3, 5-tri-O-caffeoylquinic acid from Xanthium strumarium . Phytochemistry 1993; 33: 508-509
  • 9 Han T, Li HL, Hu Y, Zhang QL, Huang BK, Zheng HC, Rahman K, Qin LP. Phenolic acids in Fructus Xanthii and determination of contents of total phenolic acids in different species and populations of Xanthium in China. Zhong Xi Yi Jie He Xue Bao 2006; 4: 194-198
  • 10 Debetto P. Plants recently found to contain atractyloside. In: Santi R, Luciani S, editors Atractyloside, chemistry, biochemistry and toxicology. Padova: Piccin Medical Books; 1978: 125
  • 11 Cole RJ, Stuart BP, Lansden JA, Cox RH. Isolation and redefinition of the toxic agent from Cocklebur (Xanthium strumarium). J Agric Food Chem 1980; 28: 1330-1332
  • 12 Lefranc E. Sur lʼacide atractylique et les atractylates, produits immédiats de la racine de l Atractylis gummifera . Compt Rend 1868; 69: 954-961
  • 13 Stanislas E, Vignais PM. Sur les principes toxiques d Atractylis gummifera L. C R Acad Sci II b Mec 1964; 259: 4872-4875
  • 14 Vignais PV. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta 1976; 456: 1-38
  • 15 Fiore C, Trzeguet V, Le Saux A, Roux P, Schwimmer C, Dianoux AC, Noel F, Lauquin GJM, Brandolin G, Vignais PV. The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 1998; 80: 137-150
  • 16 Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin Guy JM, Brandolin G. Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 2003; 426: 39-44
  • 17 Haouzi D, Cohen I, Vieira HLA, Poncet D, Boya P, Castedo M, Vadrot N, Belzacq AS, Fau D, Brenner C, Feldmann G, Kroemer G. Mitochondrial permeability transition as a novel principle of hepatorenal toxicity in vivo . Apoptosis 2002; 7: 395-405
  • 18 Quintanilla AP, Levin ML, Lastre CC, Yokoo H, Levin NW. Effects of diuretics on ADP incorporation in kidney mitochondria. J Pharmacol Exp Ther 1979; 211: 456-459
  • 19 Kholodenko BN, Zhilinskene VI, Borutaite VI, Ivanovene LI, Toleikis AI. The role of adenine nucleotide translocator in the regulation of oxidative phosphorylation in heart mitochondria. Biokhimiia 1988; 53: 1009-1012
  • 20 Vancompernolle K, Van Herreweghe F, Pynaert G, Van de Craen M, De Vos K, Totty N, Sterling A, Fiers W, Vandenabeele P, Grooten J. Atractyloside-induced release of cathepsin B, a protease with caspase-processing activity. FEBS 1998; 438: 150-158
  • 21 Luciani S, Carpenedo F, Tarjan EM. Effects of atractyloside and carboxyatractyloside in the whole animal. In: Santi R, Luciani S, editors Atractyloside, chemistry, biochemistry and toxicology. Padova: Piccin Medical Books; 1978: 109-124
  • 22 Bhoola KDN. A clinico-pathological and biochemical study of the toxicity of Callilepis laureola [dissertation]. Durban: University of Natal; 1983
  • 23 Cole RJ, Cutler HG, Stuart BP. Carboxyatractyloside. In: Cheeke PR, editor Toxicants of plant origin, Vol II. Glycosides. Boca Raton: CRC Press; 1989: 277
  • 24 Luciani S, Martini N, Santi R. Effects of carboxatractyloside a structural analogue of atractyloside on mitochondrial oxidative phosphorylation. Life Sci II 1971; 10: 961-968
  • 25 Department of Health. Guideline on proper use of Fructus Xanthii. HK, January 2005. Available at. http://cmchk.org.hk/pcm/eng/main_public.htm Accessed February 27, 2015
  • 26 Ruan GH, Li GK. The study on the chromatographic fingerprint of Fructus Xanthii by microwave assisted extraction coupled with GC-MS. J Chromatogr B 2007; 850: 241-248
  • 27 Chen LY, Hu A, Chang CJ. The degradation mechanism of toxic atractyloside in herbal medicines by decoction. Molecules 2013; 18: 2018-2028
  • 28 Stöger E. Arzneibuch der Chinesischen Medizin – Monographien des Arzneibuches der Volksrepublik China 2000 und 2005, 12th edition, Vol. 2. Stuttgart: Deutscher Apotheker; 2009
  • 29 Witte ST, Osweiler GD, Stahr HM, Mobley G. Cocklebur toxicosis in cattle associated with the consumption of mature Xanthium strumarium . J Vet Diagn Invest 1990; 2: 263-267
  • 30 Liu Y, Lulu C, Shunjun X, Xing Z, Yi F, Peishan X. RRLC-MS/MS method for the quantification of atractyloside in Fructus Xanthii (Xanthium sibiricum). Anal Methods 2013; 5: 2093-2097
  • 31 Obatomi DK, Bach PH. Biochemistry and toxicology of the diterpenoid glycoside atractyloside. Food Chem Toxicol 1998; 36: 335-346
  • 32 Laurens T, Bekker L, Steenkamp V, Stewart M. Gas chromatographic-mass spectrophotometric confirmation of atractyloside in a patient poisoned with Callilepis laureola . J Chromatogr B 2001; 765: 127-133
  • 33 Calmes M, Crespin F, Maillard C, Ollivier E, Balansard G. High-performance liquid chromatographic determination of atractyloside and carboxyatractyloside from Atractylis gummifera L. J Chromatogr A 1994; 663: 119-122
  • 34 Duo R, Chen Y, Liu Y, Huang Z, Liu Y, Yi J. Determination of carboxyatractyloside and atractyloside in Fructus Xanthii by HPLC method. Zhongguo Zhong Yao Za Zhi 2012; 37: 2313-2316
  • 35 Steenkamp PA, Harding NM, van Heerden FR, van Wyk BE. Determination of atractyloside in Callilepis laureola using solid-phase extraction and liquid chromatography-atmospheric pressure ionisation mass spectrometry. J Chromatogr A 2004; 1058: 153-162
  • 36 Steenkamp PA, Harding NM, van Heerden F, van Wyk BE. Identification of atractyloside by LC-ESI-MS in alleged herbal poisonings. Forensic Sci Int 2006; 163: 81-92
  • 37 Han YQ, Hong Y, Xia LZ, Gao JR, Wang YZ, Sun YH, Yi JH. Optimization of processing technology for Xanthii Fructus by UPLC fingerprint technique and contents of toxicity ingredient. Zhongguo Zhong Yao Za Zhi 2014; 39: 1248-1254
  • 38 An J, Wang YD, Sheng CC, Wang GZ. Comparative analysis of carboxyatractyloside and atractyloside contents in Xanthii Fructus before and after processing. Chin J Pharm Anal 2013; 33: 1910-1913
  • 39 Duo R, Chen Y, Liu YH, Huang ZF, Liu YH, Yi JH. Influence of processing on contents of carboxyatractyloside and atractyloside in Xanthii Fructus. Zhongchengyao 2013; 35: 353-356
  • 40 Wang Y, Fu B, Zhang HQ, Xiao AJ. Optimizing the toxicity reduction of sand fried Fructus Xanthii. Yiyao Daobao 2014; 33: 93-96
  • 41 Hu D, Wang Y, Wu H, An J, Wang G. Analysis of essential oil and fatty oil from Xanthii Fructus before and after stir-frying by GC-MS. Hubei Zhongyiyao Daxuje Xuebao 2012; 6: 29-31
  • 42 Council of Europe. European Pharmacopoeia, Vol. 5.0, Vol. 6.0 and Vol. 6.7. Council of Europe; 2004. 2008. and 2010
  • 43 Wagner H, Bladt S. Plant drug analysis – A thin layer chromatography atlas. Berlin Heidelberg: Springer; 1996: 359