J Reconstr Microsurg 2016; 32(01): 010-015
DOI: 10.1055/s-0035-1544179
Invited Review
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Lymphangiogenesis and Lymphangiogenic Growth Factors

Pauliina Hartiala
1   Department of Plastic and General Surgery, Turku University Central Hospital, Turku, Finland
2   Department of Medical Microbiology and Immunology, University of Turku, Finland
,
Anne M. Saarikko
1   Department of Plastic and General Surgery, Turku University Central Hospital, Turku, Finland
3   Cleft Unit, Department of Plastic Surgery, Helsinki University Central Hospital, Helsinki, Finland
› Author Affiliations
Further Information

Publication History

25 August 2014

16 November 2014

Publication Date:
09 February 2015 (online)

Abstract

Lymphedema is a progressive disease caused by damage to the lymphatic network. Recent development in the fields of preclinical growth factor research and lymphedema microsurgery promise new hope for lymphedema patients. In this article, we review the latest results on basic research and highlight the role of specific growth factors in normal lymphatic development and several disease states. Lymph node transfer, a new promising method in reconstructive lymphatic microsurgery, is also dependent on the lymphatic vascular regrowth and lymphangiogenic growth factors. We discuss the scientific basis of lymph node transfer and therapeutic potential of lymphangiogenic growth factors in the treatment of lymphedema.

 
  • References

  • 1 Alitalo K, Tammela T, Petrova TV. Lymphangiogenesis in development and human disease. Nature 2005; 438 (7070) 946-953
  • 2 Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell 2010; 140 (4) 460-476
  • 3 Banchereau J, Briere F, Caux C , et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767-811
  • 4 Warren AG, Brorson H, Borud LJ, Slavin SA. Lymphedema: a comprehensive review. Ann Plast Surg 2007; 59 (4) 464-472
  • 5 Rockson SG. Lymphedema. Am J Med 2001; 110 (4) 288-295
  • 6 Ferrell RE, Finegold DN. Research perspectives in inherited lymphatic disease: an update. Ann N Y Acad Sci 2008; 1131: 134-139
  • 7 Tabibiazar R, Cheung L, Han J , et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med 2006; 3 (7) e254
  • 8 Gross DM, Forsthuber T, Tary-Lehmann M , et al. Identification of LFA-1 as a candidate autoantigen in treatment-resistant Lyme arthritis. Science 1998; 281 (5377) 703-706
  • 9 Clas F, Loos M. Antibody-independent binding of the first component of complement (C1) and its subcomponent C1q to the S and R forms of Salmonella minnesota. Infect Immun 1981; 31 (3) 1138-1144
  • 10 Barthold SW, de Souza M. Exacerbation of Lyme arthritis in beige mice. J Infect Dis 1995; 172 (3) 778-784
  • 11 Suami H, Chang DW. Overview of surgical treatments for breast cancer-related lymphedema. Plast Reconstr Surg 2010; 126 (6) 1853-1863
  • 12 Becker C, Assouad J, Riquet M, Hidden G. Postmastectomy lymphedema: long-term results following microsurgical lymph node transplantation. Ann Surg 2006; 243 (3) 313-315
  • 13 Baumeister RG, Seifert J, Hahn D. Autotransplantation of lymphatic vessels. Lancet 1981; 1 (8212) 147
  • 14 Chang DW. Lymphaticovenular bypass for lymphedema management in breast cancer patients: a prospective study. Plast Reconstr Surg 2010; 126 (3) 752-758
  • 15 Nagase T, Gonda K, Inoue K , et al. Treatment of lymphedema with lymphaticovenular anastomoses. Int J Clin Oncol 2005; 10 (5) 304-310
  • 16 Wigle JT, Harvey N, Detmar M , et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002; 21 (7) 1505-1513
  • 17 Harvey NL, Srinivasan RS, Dillard ME , et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult-onset obesity. Nat Genet 2005; 37 (10) 1072-1081
  • 18 Karkkainen MJ, Haiko P, Sainio K , et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004; 5 (1) 74-80
  • 19 Oliver G. Lymphatic vasculature development. Nat Rev Immunol 2004; 4 (1) 35-45
  • 20 Lohela M, Bry M, Tammela T, Alitalo K. VEGFs and receptors involved in angiogenesis versus lymphangiogenesis. Curr Opin Cell Biol 2009; 21 (2) 154-165
  • 21 Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006; 7 (5) 359-371
  • 22 Tervala T, Suominen E, Saaristo A. Targeted treatment for lymphedema and lymphatic metastasis. Ann N Y Acad Sci 2008; 1131: 215-224
  • 23 Wirzenius M, Tammela T, Uutela M , et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med 2007; 204 (6) 1431-1440
  • 24 Karpanen T, Bry M, Ollila HM , et al. Overexpression of vascular endothelial growth factor-B in mouse heart alters cardiac lipid metabolism and induces myocardial hypertrophy. Circ Res 2008; 103 (9) 1018-1026
  • 25 Caunt M, Mak J, Liang WC , et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 2008; 13 (4) 331-342
  • 26 Iozzo RV, San Antonio JD. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001; 108 (3) 349-355
  • 27 Petrova TV, Karpanen T, Norrmén C , et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004; 10 (9) 974-981
  • 28 Sabine A, Agalarov Y, Maby-El Hajjami H , et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 2012; 22 (2) 430-445
  • 29 Fang J, Dagenais SL, Erickson RP , et al. Mutations in FOXC2 (MFH-1), a forkhead family transcription factor, are responsible for the hereditary lymphedema-distichiasis syndrome. Am J Hum Genet 2000; 67 (6) 1382-1388
  • 30 Finegold DN, Baty CJ, Knickelbein KZ , et al. Connexin 47 mutations increase risk for secondary lymphedema following breast cancer treatment. Clin Cancer Res 2012; 18 (8) 2382-2390
  • 31 Sleeman JP, Thiele W. Tumor metastasis and the lymphatic vasculature. Int J Cancer 2009; 125 (12) 2747-2756
  • 32 Holopainen T, Bry M, Alitalo K, Saaristo A. Perspectives on lymphangiogenesis and angiogenesis in cancer. J Surg Oncol 2011; 103 (6) 484-488
  • 33 Schoppmann SF, Birner P, Stöckl J , et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am J Pathol 2002; 161 (3) 947-956
  • 34 Yan A, Avraham T, Zampell JC, Aschen SZ, Mehrara BJ. Mechanisms of lymphatic regeneration after tissue transfer. PLoS ONE 2011; 6 (2) e17201
  • 35 Maruyama K, Asai J, Ii M, Thorne T, Losordo DW, D'Amore PA. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. Am J Pathol 2007; 170 (4) 1178-1191
  • 36 Ristimäki A, Narko K, Enholm B, Joukov V, Alitalo K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem 1998; 273 (14) 8413-8418
  • 37 Li J, Perrella MA, Tsai JC , et al. Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. J Biol Chem 1995; 270 (1) 308-312
  • 38 Baluk P, Tammela T, Ator E , et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 2005; 115 (2) 247-257
  • 39 Nakamura K, Radhakrishnan K, Wong YM, Rockson SG. Anti-inflammatory pharmacotherapy with ketoprofen ameliorates experimental lymphatic vascular insufficiency in mice. PLoS ONE 2009; 4 (12) e8380
  • 40 Patel KM, Lin CY, Cheng MH. From Theory to Evidence: Long-Term Evaluation of the Mechanism of Action and Flap Integration of Distal Vascularized Lymph Node Transfers. J Reconstr Microsurg 2014;
  • 41 Lin CH, Ali R, Chen SC , et al. Vascularized groin lymph node transfer using the wrist as a recipient site for management of postmastectomy upper extremity lymphedema. Plast Reconstr Surg 2009; 123 (4) 1265-1275
  • 42 Saaristo AM, Niemi TS, Viitanen TP, Tervala TV, Hartiala P, Suominen EA. Microvascular breast reconstruction and lymph node transfer for postmastectomy lymphedema patients. Ann Surg 2012; 255 (3) 468-473
  • 43 Hartiala P, Saaristo AM. Growth factor therapy and autologous lymph node transfer in lymphedema. Trends Cardiovasc Med 2010; 20 (8) 249-253
  • 44 Viitanen TP, Mäki MT, Seppänen MP, Suominen EA, Saaristo AM. Donor-site lymphatic function after microvascular lymph node transfer. Plast Reconstr Surg 2012; 130 (6) 1246-1253
  • 45 Lähteenvuo M, Honkonen K, Tervala T , et al. Growth factor therapy and autologous lymph node transfer in lymphedema. Circulation 2011; 123 (6) 613-620
  • 46 Tammela T, Saaristo A, Holopainen T , et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 2007; 13 (12) 1458-1466
  • 47 Mebius RE, Streeter PR, Brevé J, Duijvestijn AM, Kraal G. The influence of afferent lymphatic vessel interruption on vascular addressin expression. J Cell Biol 1991; 115 (1) 85-95
  • 48 Enholm B, Paavonen K, Ristimäki A , et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997; 14 (20) 2475-2483
  • 49 Rissanen TT, Markkanen JE, Gruchala M , et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ Res 2003; 92 (10) 1098-1106
  • 50 Saaristo A, Veikkola T, Tammela T , et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J Exp Med 2002; 196 (6) 719-730
  • 51 Yoon YS, Murayama T, Gravereaux E , et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest 2003; 111 (5) 717-725
  • 52 Karkkainen MJ, Saaristo A, Jussila L , et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A 2001; 98 (22) 12677-12682
  • 53 Szuba A, Cooke JP, Yousuf S, Rockson SG. Decongestive lymphatic therapy for patients with cancer-related or primary lymphedema. Am J Med 2000; 109 (4) 296-300
  • 54 Baker A, Kim H, Semple JL , et al. Experimental assessment of pro-lymphangiogenic growth factors in the treatment of post-surgical lymphedema following lymphadenectomy. Breast Cancer Res 2010; 12 (5) R70
  • 55 Veikkola T, Jussila L, Makinen T , et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001; 20 (6) 1223-1231
  • 56 Rabson JA, Geyer SJ, Levine G, Swartz WM, Futrell JW. Tumor immunity in rat lymph nodes following transplantation. Ann Surg 1982; 196 (1) 92-99
  • 57 Fu K, Izquierdo R, Vandevender D, Warpeha RL, Fareed J. Transplantation of lymph node fragments in a rabbit ear lymphedema model: a new method for restoring the lymphatic pathway. Plast Reconstr Surg 1998; 101 (1) 134-141
  • 58 Honkonen KM, Visuri MT, Tervala TV , et al. Lymph node transfer and perinodal lymphatic growth factor treatment for lymphedema. Ann Surg 2013; 257 (5) 961-967
  • 59 Viitanen TP, Visuri MT, Hartiala P , et al. Lymphatic vessel function and lymphatic growth factor secretion after microvascular lymph node transfer in lymphedema patients. Plast Reconstr Surg Glob Open 2013; 1 (2) 1-9
  • 60 Penha TR, Ijsbrandy C, Hendrix NA , et al. Microsurgical techniques for the treatment of breast cancer-related lymphedema: a systematic review. J Reconstr Microsurg 2013; 29 (2) 99-106