Aktuelle Neurologie 2015; 42(07): 385-392
DOI: 10.1055/s-0034-1396883
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Genetik neurodegenerativer Erkrankungen

Genetics of Neurodegenerative Diseases
T. Gasser
1   Neurodegenerative Erkrankungen, DZNE – Deutsches Zentrum für Neurodegenerative Erkrankungen, Tübingen
,
D. Berg
1   Neurodegenerative Erkrankungen, DZNE – Deutsches Zentrum für Neurodegenerative Erkrankungen, Tübingen
› Author Affiliations
Further Information

Publication History

Publication Date:
14 September 2015 (online)

Zusammenfassung

Die Erforschung der genetischen Grundlagen seltener erblicher Formen neurodegenerativer Erkrankungen hat erheblich zum Verständnis der molekularen Mechanismen der Krankheitsentstehung beigetragen. Zahlreiche Gene wurden bereits identifiziert und ihre Funktion und die mutationsbedingten Funktionsstörungen wurden in den verschiedensten Tier- und Zellmodellen untersucht und charakterisiert. In vielen Fällen konnten so Klassifikationen geschaffen werden, welche die herkömmlichen Krankheitsnosologien nach klinischen und pathologischen Kriterien ergänzen. Neue Hochdurchsatzmethoden der Genotypisierung und Gensequenzierung haben es in den letzten Jahren auch ermöglicht, die genetischen Grundlagen der sehr viel häufigeren sporadischen Erkrankungsformen ins Visier zu nehmen. Auch wenn diese Untersuchungen noch am Anfang stehen, so besteht doch die berechtigte Hoffnung, dass sie letztlich dazu führen werden, neue diagnostische und therapeutische Zugänge zu entwickeln, die eine gezieltere Behandlung im Sinne einer stratifizierten oder vielleicht sogar personalisierten Medizin ermöglichen.

Abstract

Research on the genetic basis of rare hereditary forms of neurodegenerative diseases has made a significant contribution to the understanding of the underlying molecular mechanisms of pathogenesis. Numerous genes have been identified and their functions and mutation-caused dysfunctions have been analyzed and characterized in a broad range of animal and cell models. In many cases, classifications could be established, which add clinical and pathological criteria to conventional disease nosologies. New high-throughput genotyping and gene-sequencing methods have made it possible in recent years to look more closely at the genetic basis of the much more common sporadic disease forms. Although this research is still in its early stages, there is a justified hope that it will ultimately lead to the development of new diagnostic and therapeutic approaches, which will enable targeted treatment in the sense of stratified or even personalized medicine.

 
  • Literatur

  • 1 Bras J, Guerreiro R, Hardy J. Use of next-generation sequencing and other whole-genome strategies to dissect neurological disease. Nat Rev Neurosci 2012; 13: 453-464
  • 2 Simon-Sanchez J, Singleton A. Genome-wide association studies in neurological disorders. Lancet Neurol 2008; 7: 1067-1072
  • 3 Bruni AC, Conidi ME, Bernardi L. Genetics in degenerative dementia: current status and applicability. Alzheimer Dis Assoc Disord 2014; 28: 199-205
  • 4 Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297: 353-356
  • 5 Brody DL, Holtzman DM. Active and passive immunotherapy for neurodegenerative disorders. Annual review of neuroscience 2008; 31: 175-193
  • 6 Bateman RJ, Xiong C, Benzinger TL et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367: 795-804
  • 7 Corder EH, Saunders AM, Strittmatter WJ et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921-923
  • 8 Polymeropoulos MH, Lavedan C, Leroy E et al. Mutation in the a-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276: 2045-2047
  • 9 Spillantini MG, Schmidt ML, Lee VM et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388: 839-840
  • 10 Singleton AB, Farrer M, Johnson J et al. alpha-Synuclein Locus Triplication Causes Parkinson’s Disease. Science 2003; 302: 841
  • 11 Zimprich A, Biskup S, Leitner P et al. Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron 2004; 44: 601-607
  • 12 Paisan-Ruiz C, Jain S, Evans EW et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004; 44: 595-600
  • 13 Ishikawa A, Tsuji S. Clinical analysis of 17 patients in 12 Japanese families with autosomal-recessive type juvenile parkinsonism. Neurology 1996; 47: 160-166
  • 14 Kitada T, Asakawa S, Hattori N et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392: 605-608
  • 15 Lücking CB, Dürr A, Bonifati V et al. Association between Early-Onset Parkinson’s Disease and Mutations in the Parkin Gene. N Engl J Med 2000; 342: 1560-1567
  • 16 Valente EM, Abou-Sleiman PM, Caputo V et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304: 1158-1160
  • 17 Geisler S, Holmstrom KM, Treis A et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 2010; 6: 871-878
  • 18 Vilarino-Guell C, Wider C, Ross OA et al. VPS35 mutations in Parkinson disease. Am J Hum Genet 2011; 89: 162-167
  • 19 Zimprich A, Benet-Pages A, Struhal W et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 2011; 89: 168-175
  • 20 Quadri M, Fang M, Picillo M et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset Parkinsonism. Hum Mutat 2013; 34: 1208-1215
  • 21 Edvardson S, Cinnamon Y, Ta-Shma A et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS One 2012; 7: e36458
  • 22 Witt K, Deuschl G, Bartsch T. Frontotemporal dementias. Nervenarzt 2013; 84: 20-32
  • 23 Hutton M, Lendon CL, Rizzu P et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393: 702-705
  • 24 Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314: 130-133
  • 25 Gass J, Cannon A, Mackenzie IR et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 2006; 15: 2988-3001
  • 26 Cruts M, Gijselinck I, van der Zee J et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 2006; 442: 920-924
  • 27 Renton AE, Majounie E, Waite A et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011; 72: 257-268
  • 28 DeJesus-Hernandez M, Mackenzie IR, Boeve BF et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011; 72: 245-256
  • 29 Nalls MA, Pankratz N, Lill CM et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014 DOI: DOI: 10.1038/ng.3043
  • 30 Lambert JC, Ibrahim-Verbaas CA, Harold D et al. Meta-analysis of 74 046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013; 45: 1452-1458
  • 31 Guerreiro R, Wojtas A, Bras J et al. TREM2 Variants in Alzheimer’s Disease. N Engl J Med 2012; DOI: 10.1056/NEJMoa1211851.
  • 32 Sidransky E, Nalls MA, Aasly JO et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med 2009; 361: 1651-1661
  • 33 Brockmann K, Srulijes K, Hauser AK et al. GBA-associated PD presents with nonmotor characteristics. Neurology 2011; 77: 276-280
  • 34 Manolio TA, Collins FS, Cox NJ et al. Finding the missing heritability of complex diseases. Nature 2009; 461: 747-753