Aktuelle Neurologie 2015; 42(02): 80-85
DOI: 10.1055/s-0034-1387575
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Therapie der MuSK-MG und neue Antikörper bei Myasthenia gravis

Treatment of MuSK-MG and Novel Antibodies Associated with Myasthenia Gravis
B. Schoser
Friedrich-Baur-Institut, Neurologische Klinik, Klinikum der Universität München
› Author Affiliations
Further Information

Publication History

Publication Date:
16 March 2015 (online)

Zusammenfassung

Bis zu 10 % der Myasthenia gravis (MG)-Patienten haben Antikörper gegen die spezifisch in der Skelettmuskulatur exprimierte Tyrosinkinase MuSK (MuSK-MG). Die MuSK-MG ist gekennzeichnet durch einen spezifischen klinischen Phänotyp und unterscheidet sich in ihrer Behandlung von der AChR-MG. Primärziel der Behandlung ist eine Reduktion der Muskelschwäche, besonders bei oropharyngealer oder ventilatorischer Beteiligung. Nur wenige MuSK-MG-Patienten können die Therapie wieder absetzen, die Mehrheit benötigt eine Langzeitbehandlung. Das Ansprechen auf Azetylcholinesterase-Hemmer (AChE-H) ist normalerweise schlecht und häufig mit cholinergen Nebenwirkungen verbunden. Nichtsdestotrotz ist ein initialer Therapieversuch mit AChE-H sinnvoll. Basierend auf klinischer Evidenz wird eine initiale Kortikosteroidtherapie mit 1,5 – 2 mg/kg/Tag Prednison, gefolgt von einer graduierten und langsamen Reduktion auf eine minimaleffektive Dosis, empfohlen. Steroidsparende Substanzen wie Azathioprin, Methotrexat, Mycophenolat Mofetil oder Cyclosporin werden ergänzend eingesetzt. Cyclophosphamid kann bei ausgewählten Patienten eingesetzt werden. Alternativ zeigt Rituximab vielversprechende Ergebnisse und sollte daher bei schweren refraktären Verläufen erwogen werden. Bei Exazerbationen kann die Plasmapherese oder intravenöse Immunglobuline eingesetzt werden. Auf eine Thymektomie sollte bei MuSK-MG weitgehend verzichtet werden. In den letzten 3 Jahren wurden neue MG-Antikörper nachweisbar. Die Low-density lipoprotein receptor-related protein 4 (LRP4)-MG ist klinisch und therapeutisch vergleichbar der MuSK-MG mit einem okulo-bulbo-zervikalen Phänotyp und einem Beginn um das 40. Lebensjahr. Der Phänotyp der Agrin-MG besteht aus einer fazio-bulbo-zervikalen Schwäche, aber unsere Kenntnis dieser Unterform ist noch limitiert. Von Interesse ist das Auftreten von polyvalenten Antikörpern gegen die neuromuskuläre Endplatte. Diese Patientengruppe kann helfen die Krankheitsausprägung, die Verlaufsvarianz sowie das Therapieansprechen besser in Zukunft zu verstehen.

Abstract

Up to 10 % of myasthenia gravis (MG) patients show antibodies against muscle-specific tyrosine kinase (MuSK) receptors. MuSK-MG has a distinct clinical phenotype and differs for their treatment. Key issue of treatment is to reduce muscular weakness, particular with oropharyngeal or ventilatory involvement. A minority of MuSK-MG patients can halt treatment; however the majority will require long-term treatment. Response to acetylcholinesterase inhibitors (AChE-I) is typically poor with a high incidence of cholinergic side effects. Nevertheless, an initial therapy with AChE-I is rational. Based on clinical evidence initiating corticosteroid treatment starting at a dose of 1.5 – 2 mg/kg/day of prednisone, followed by gradual and slow taper to the minimum effective dose is recommended. Steroid-sparing agents such as azathioprine, methotrexate, mycophenolate mofetil or cyclosporine may be added. Cyclophosphamide may be used in select patients. Rituximab has shown promising results and should be considered in severe and refractory patients. Severe exacerbations may be treated by plasma exchange, which most reports specify superior to immunoglobulins. There is no evidence for a role of thymectomy in MuSK-MG. During the past 3 years, new antibodies are detected in MG. Low-density lipoprotein receptor-related protein 4 (LRP4)-MG seems to be clinically and for treatment responses comparable to the MuSK-MG with an oculo-bulbar-cervical phenotype. The Agrin-MG presents with a facio-bulbar-cervical phenotype, however our current knowledge is limited. Most interestingly, there seems to be several MG patients with a poly-antibody response. This group of patients may help to gain novel insights into modifying elements of the MG spectrum in clinics and therapy.

 
  • Literatur

  • 1 Meyer A, Levy Y. Geoepidemiology of myasthenia gravis. Autoimmun Rev 2010; 9: A383-A386
  • 2 Romi F, Aarli JA, Gilhus NE. Seronegative myasthenia gravis: disease severity and prognosis. Eur J Neurol 2005; 12: 413-418
  • 3 Evoli A, Bianchi MR, Riso R et al. Response to therapy in myasthenia gravis with anti-MuSK antibodies. Ann N Y Acad Sci 2008; 1132: 76-83
  • 4 Deymeer F, Gungor-Tuncer O, Yilmaz V. Clinical comparison of anti-MuSK- vs anti-AChR-positive and seronegative myasthenia gravis. Neurology 2007; 68: 609-611
  • 5 Vincent A, Leite MI, Farrugia ME et al. Myasthenia gravis seronegative for acetylcholine receptor antibody. Ann N Y Acad Sci 2008; 1132: 84-92
  • 6 Oh SJ, Morgan MB, Lu L et al. Racial differences in myasthenia gravis in Alabama. Muscle Nerve 2009; 39: 328-332
  • 7 Oh SJ. Muscle specific receptor tyrosine kinase antibody positive myasthenia gravis current status. J Clin Neurol 2009; 5: 53-64
  • 8 Niks EH, Kuks JB, Roep BO et al. Strong association of MuSK antibody-positive myasthenia gravis and HLA-DR14 DQ5. Neurology 2006; 66: 1772-1774
  • 9 Bartoccioni E, Scuderi F, Augugliaro A et al. HLA class II allele analysis in MuSK-positive myasthenia gravis suggests a role for DQ5. Neurology 2009; 72: 195-197
  • 10 Evoli A, Padua L. Diagnosis and therapy of myasthenia gravis with antibodies to muscle-specific kinase. Autoim rev 2013; 12: 931-935
  • 11 Lauriola L, Ranelletti F, Maggiano N et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology 2005; 64: 536-538
  • 12 Leite MI, Ströbel P, Jones M et al. Fewer thymic changes in MuSK antibody-positive than in MuSK antibody-negative MG. Ann Neurol 2005; 57: 444-448
  • 13 Gomez AM, Van Den Broeck J, Vrolix K et al. Antibody effector mechanisms in myasthenia gravis-Pathogenesis at the neuromuscular junction. Autoimmunity 2010; 43: 353-370
  • 14 Mori S, Kubo S, Akiyoshi T et al. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. Am J Pathol 2012; 180: 798-810
  • 15 Hanisch E, Eger EK, Zierz S. MuSK-antibody positive pure ocular myasthenia gravis. J Neurol 2006; 253: 659-660
  • 16 Evoli A, Tonali PA, Padua L et al. Clinical correlates with anti-MuSK antibodies in generalized seronegative myasthenia gravis. Brain 2003; 126: 2304-2311
  • 17 Phillips II LH, Melnick PA. Diagnosis of myasthenia gravis in the 1990s. Semin Neurol 1990; 10: 62-69
  • 18 Hatanaka Y, Hemmi S, Morgan MB et al. Nonresponsiveness to anticholinesterase agents in patients with anti-MuSK-antibody positive MG. Neurology 2005; 65: 1508-1509
  • 19 Sanders DB, Stälberg EV. AAEM minimonograph #25: single-fiber electromyography. Muscle Nerve 1996; 19: 1069-1083
  • 20 Oh SJ, Hatanaká Y, Hemmi S et al. Repetitive nerve stimulation of facial muscles in MuSK antibody positive myasthenia gravis. Muscle Nerve 2006; 33: 500-504
  • 21 Bartoccioni E, Scuderi F, Minicuci GM et al. Anti-MuSK antibodies: correlation with myasthenia gravis severity. Neurology 2006; 67: 505-507
  • 22 Keesey JC. Clinical evaluation and management of myasthenia gravis. Muscle Nerve 2004; 29: 484-505
  • 23 Saulat B, Maertens P, Hamilton WJ et al. Anti-MuSK antibody after thymectomy in a previously seropositive myasthenic child. Neurology 2007; 69: 803-804
  • 24 Kostera-Pruszczyk A, Kwiecinski H. Juvenile seropositive myasthenia gravis with anti-MuSK antibody after thymectomy. J Neurol 2009; 256: 1780-1781
  • 25 Saka E, Topcuoglu MA, Akkaya B et al. Thymus changes in anti-MuSK-positive and -negative myasthenia gravis. Neurology 2005; 65: 782-783
  • 26 Sanders DB, Evoli A. Immunosuppressive treatment of myasthenia gravis. Autoimmunity 2010; 43: 428-435
  • 27 Lavrnic D, Losen M, Vujic A et al. The features of myasthenia gravis with autoantibodies to MuSK. J Neurol Neurosurg Psychiatry 2005; 76: 1099-1102
  • 28 Wolfe GI, Trivedi JR, Oh SJ. Clinical review of muscle-specific tyrosine kinase antibody positive myasthenia gravis. J Clin Neuromuscul Dis 2007; 8: 217-224
  • 29 Sanders DB, Massey J, Juel VC. Muscle antibody positive myasthenia gravis: response to treatment in 31 patients. Neurology 2007; 68: A299
  • 30 Guptill JT, Sanders DB. Update on muscle-specific tyrosine kinase antibody positive myasthenia gravis. Curr Opin Neurol 2010; 23: 530-535
  • 31 Pasnoor M, Wolfe G, Nations S et al. Clinical findings in MuSK-antibody positive myasthenia gravis: a U. S. experience. Muscle Nerve 2010; 41: 370-374
  • 32 Guptill JF, Sanders DB, Evoli A. Anti-MuSK antibody myasthenia gravis: clinical finding and response to therapy in two large cohorts. Muscle Nerve 2011; 44: 36-40
  • 33 Takahashi H, Kawaguchi N, Ito S et al. Is tongue atrophy reversible in anti-MuSK myasthenia gravis? Six-year observation. J Neurol Neurosurg Psychiatry 2010; 81: 701-702
  • 34 Drachman DB, Adams RN, Hu R et al. Rebooting the immune system with high-dose cyclophosphamide for treatment of refractory myasthenia gravis. Ann N Y Acad Sci 2008; 1132: 305-314
  • 35 Drachman DB, Jones RJ, Brodsky RA. Treatment of refractory myasthenia: “rebooting” with high-dose cyclophosphamide. Ann Neurol 2003; 5: 29-34
  • 36 Lin PT, Martin BA, Weinacker AB et al. High-dose cyclophosphamide in refractory myasthenia gravis with anti-MuSK antibodies. Muscle Nerve 2006; 33: 433-435
  • 37 Dörner T, Isenberg D, Jayne D et al. Current status on B-cell depletion therapy in autoimmune diseases other than rheumatoid arthritis. Autoimmun Rev 2009; 9: 82-89
  • 38 Dìaz-Manera J, Martìnez-Hernandez E, Querol L et al. Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology 2012; 78: 189-193
  • 39 Blum S, Gillis D, Brown H et al. Use and monitoring of low dose rituximab in myasthenia gravis. J Neurol Neurosurg Psychiatry 2011; 82: 659-663
  • 40 Vincent A, Bowen J, Newsom-Davis J et al. Seronegative generalised myasthenia gravis: clinical features, antibodies, and their targets. Lancet Neurol 2003; 2: 99-106
  • 41 Vincent A, Leite MI, Farrugia ME et al. Myasthenia gravis seronegative for acetylcholine receptor antibodies. Ann NY Acad Sci 2008; 1132: 84-92
  • 42 Romi F, Aarli JA et al. Seronegative myasthenia gravis: disease severity and prognosis. Eur J Neurol 2005; 12: 413-418
  • 43 Pevzner A, Schoser B, Peters K et al. LRP4 is a target for autoantibodies in AChR- and MuSK seronegative Myasthenia gravis. J Neurol 2012; 259: 427-435
  • 44 Higuchi O, Hamuro J, Motomura M et al. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 2011; 69: 418-422
  • 45 Zhang B, Tzartos JS, Belimezi M et al. Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol 2012; 69: 445-451
  • 46 Shen C, Lu Y, Zhang B et al. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. The Journal of Clinical Investigation 2013; 123: 5190-5202
  • 47 Gasperi C, Melms A, Schoser B et al. Anti-Agrin Autoantibodies in Myasthenia gravis. Neurology 2014; 82: 1976-1983
  • 48 Magill-Solc C, McMahan UJ. Motorneurons contain agrin-like molecules. J Cell Biol 1988; 107: 1825-1833
  • 49 Zhang B, Luo S, Wang Q et al. LRP4 serves as a coreceptor of agrin. Neuron 2008; 60: 285-297
  • 50 Weatherbee SD, Anderson KV, Niswander LA. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 2006; 133: 4993-5000
  • 51 Gomez AM, Burden SJ. The extracellular region of Lrp4 is sufficient to mediate neuromuscular synapse formation. Dev Dyn 2011; 240: 2626-2633
  • 52 Zouvelou V, Zisimopoulou P, Rentzos M et al. Double seronegative myasthenia gravis with anti-LRP 4 antibodies. Neuromuscul Disord 2013; 23: 568-570
  • 53 Zisimopoulou P, Evangelakou P, Tzartos J et al. A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun 2014; 52: 139-145
  • 54 Cruz PM, Palace J, Beeson D. Congenital myasthenic syndromes and the neuromuscular junction. Curr Opin Neurol 2014; 27: 566-575
  • 55 Eymard B, Hantaï D, Estournet B. Congenital myasthenic syndromes. Handb Clin Neurol 2013; 113: 1469-1480
  • 56 Li Y, Pawlik B, Elcioglu N et al. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome. Am J Hum Genet 2010; 86: 696-706