Semin Neurol 2014; 34(03): 266-279
DOI: 10.1055/s-0034-1386765
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genetic Forms of Epilepsies and Other Paroxysmal Disorders

Heather E. Olson
1   Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
2   Department of Neurology, Harvard Medical School, Boston, Massachusetts
,
Annapurna Poduri
1   Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
2   Department of Neurology, Harvard Medical School, Boston, Massachusetts
,
Phillip L. Pearl
1   Division of Epilepsy, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
2   Department of Neurology, Harvard Medical School, Boston, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
05 September 2014 (online)

Abstract

Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders, such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including tuberous sclerosis complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of single-gene causes or susceptibility factors associated with several epilepsy syndromes, including the early-onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look toward the future of epilepsy genetics.

 
  • References

  • 1 Shirley MD, Tang H, Gallione CJ , et al. Sturge-Weber syndrome and port-wine stains caused by somatic mutation in GNAQ. N Engl J Med 2013; 368 (21) 1971-1979
  • 2 Poduri A, Evrony GD, Cai X, Walsh CA. Somatic mutation, genomic variation, and neurological disease. Science 2013; 341 (6141) 1237758
  • 3 Lindhout D. Somatic mosaicism as a basic epileptogenic mechanism?. Brain 2008; 131 (Pt 4) 900-901
  • 4 Shi YW, Yu MJ, Long YS , et al. Mosaic SCN1A mutations in familial partial epilepsy with antecedent febrile seizures. Genes Brain Behav 2012; 11 (2) 170-176
  • 5 Bartnik M, Derwińska K, Gos M , et al. Early-onset seizures due to mosaic exonic deletions of CDKL5 in a male and two females. Genet Med 2011; 13 (5) 447-452
  • 6 Deprez L, Weckhuysen S, Holmgren P , et al. Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology 2010; 75 (13) 1159-1165
  • 7 Guerrini R, Moro F, Kato M , et al. Expansion of the first PolyA tract of ARX causes infantile spasms and status dystonicus. Neurology 2007; 69 (5) 427-433
  • 8 Olivetti PR, Noebels JL. Interneuron, interrupted: molecular pathogenesis of ARX mutations and X-linked infantile spasms. Curr Opin Neurobiol 2012; 22 (5) 859-865
  • 9 Mirzaa GM, Paciorkowski AR, Marsh ED , et al. CDKL5 and ARX mutations in males with early-onset epilepsy. Pediatr Neurol 2013; 48 (5) 367-377
  • 10 Saitsu H, Kato M, Mizuguchi T , et al. De novo mutations in the gene encoding STXBP1 (MUNC18-1) cause early infantile epileptic encephalopathy. Nat Genet 2008; 40 (6) 782-788
  • 11 Mari F, Azimonti S, Bertani I , et al. CDKL5 belongs to the same molecular pathway of MeCP2 and it is responsible for the early-onset seizure variant of Rett syndrome. Hum Mol Genet 2005; 14 (14) 1935-1946
  • 12 Fehr S, Wilson M, Downs J , et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet 2013; 21 (3) 266-273
  • 13 Buiting K. Prader-Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet 2010; 154C (3) 365-376
  • 14 Weksberg R. Imprinted genes and human disease. Am J Med Genet C Semin Med Genet 2010; 154C (3) 317-320
  • 15 Carvill GL, Heavin SB, Yendle SC , et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45 (7) 825-830
  • 16 Depienne C, Trouillard O, Gourfinkel-An I , et al. Mechanisms for variable expressivity of inherited SCN1A mutations causing Dravet syndrome. J Med Genet 2010; 47 (6) 404-410
  • 17 Gennaro E, Santorelli FM, Bertini E , et al. Somatic and germline mosaicisms in severe myoclonic epilepsy of infancy. Biochem Biophys Res Commun 2006; 341 (2) 489-493
  • 18 Scheffer IE, Zhang YH, Jansen FE, Dibbens L. Dravet syndrome or genetic (generalized) epilepsy with febrile seizures plus?. Brain Dev 2009; 31 (5) 394-400
  • 19 Olson HE, Poduri A . Epilepsy: When to perform a genetic analysis. In: Miller JW, Goodkin HP, eds. Epilepsy. Hoboken, NJ: Wiley; 2014. : 159-166
  • 20 O'Brien JE, Meisler MH. Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 2013; 4: 213
  • 21 Veeramah KR, Johnstone L, Karafet TM , et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 2013; 54 (7) 1270-1281
  • 22 Martin MS, Tang B, Papale LA, Yu FH, Catterall WA, Escayg A. The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum Mol Genet 2007; 16 (23) 2892-2899
  • 23 Hawkins NA, Martin MS, Frankel WN, Kearney JA, Escayg A. Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. Neurobiol Dis 2011; 41 (3) 655-660
  • 24 Oliva M, Berkovic SF, Petrou S. Sodium channels and the neurobiology of epilepsy. Epilepsia 2012; 53 (11) 1849-1859
  • 25 Doty CN. SCN9A: another sodium channel excited to play a role in human epilepsies. Clin Genet 2010; 77 (4) 326-328
  • 26 Baraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 2013; 4: 2410
  • 27 Hortopan GA, Dinday MT, Baraban SC. Zebrafish as a model for studying genetic aspects of epilepsy. Dis Model Mech 2010; 3 (3-4) 144-148
  • 28 Liu Y, Lopez-Santiago LF, Yuan Y , et al. Dravet syndrome patient-derived neurons suggest a novel epilepsy mechanism. Ann Neurol 2013; 74 (1) 128-139
  • 29 Bamshad MJ, Ng SB, Bigham AW , et al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 2011; 12 (11) 745-755
  • 30 Allen AS, Berkovic SF, Cossette P , et al; Epi4K Consortium; Epilepsy Phenome/Genome Project De novo mutations in epileptic encephalopathies. Nature 2013; 501 (7466) 217-221
  • 31 Foo JN, Liu JJ, Tan EK. Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol 2012; 8 (9) 508-517
  • 32 Handel AE, Disanto G, Ramagopalan SV. Next-generation sequencing in understanding complex neurological disease. Expert Rev Neurother 2013; 13 (2) 215-227
  • 33 Chu-Shore CJ, Major P, Camposano S, Muzykewicz D, Thiele EA. The natural history of epilepsy in tuberous sclerosis complex. Epilepsia 2010; 51 (7) 1236-1241
  • 34 Vignoli A, La Briola F, Turner K , et al. Epilepsy in TSC: certain etiology does not mean certain prognosis. Epilepsia 2013; 54 (12) 2134-2142
  • 35 Elterman RD, Shields WD, Mansfield KA, Nakagawa J ; US Infantile Spasms Vigabatrin Study Group. Randomized trial of vigabatrin in patients with infantile spasms. Neurology 2001; 57 (8) 1416-1421
  • 36 Chiron C, Dumas C, Jambaqué I, Mumford J, Dulac O. Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis. Epilepsy Res 1997; 26 (2) 389-395
  • 37 Krueger DA, Wilfong AA, Holland-Bouley K , et al. Everolimus treatment of refractory epilepsy in tuberous sclerosis complex. Ann Neurol 2013; 74 (5) 679-687
  • 38 Neul JL, Kaufmann WE, Glaze DG , et al; RettSearch Consortium. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol 2010; 68 (6) 944-950
  • 39 Kortüm F, Das S, Flindt M , et al. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet 2011; 48 (6) 396-406
  • 40 Florian C, Bahi-Buisson N, Bienvenu T. FOXG1-related disorders: from clinical description to molecular genetics. Mol Syndromol 2012; 2 (3-5) 153-163
  • 41 Cardoza B, Clarke A, Wilcox J , et al. Epilepsy in Rett syndrome: association between phenotype and genotype, and implications for practice. Seizure 2011; 20 (8) 646-649
  • 42 Guerrini R, Parrini E. Epilepsy in Rett syndrome, and CDKL5- and FOXG1-gene-related encephalopathies. Epilepsia 2012; 53 (12) 2067-2078
  • 43 Pintaudi M, Calevo MG, Vignoli A , et al. Epilepsy in Rett syndrome: clinical and genetic features. Epilepsy Behav 2010; 19 (3) 296-300
  • 44 Bao X, Downs J, Wong K, Williams S, Leonard H. Using a large international sample to investigate epilepsy in Rett syndrome. Dev Med Child Neurol 2013; 55 (6) 553-558
  • 45 Buoni S, Zannolli R, De Felice C , et al. EEG features and epilepsy in MECP2-mutated patients with the Zappella variant of Rett syndrome. Clin Neurophysiol 2010; 121 (5) 652-657
  • 46 Nissenkorn A, Gak E, Vecsler M, Reznik H, Menascu S, Ben Zeev B. Epilepsy in Rett syndrome---the experience of a National Rett Center. Epilepsia 2010; 51 (7) 1252-1258
  • 47 Klein KM, Yendle SC, Harvey AS , et al. A distinctive seizure type in patients with CDKL5 mutations: hypermotor-tonic-spasms sequence. Neurology 2011; 76 (16) 1436-1438
  • 48 Striano P, Paravidino R, Sicca F , et al. West syndrome associated with 14q12 duplications harboring FOXG1. Neurology 2011; 76 (18) 1600-1602
  • 49 Tan WH, Bacino CA, Skinner SA , et al. Angelman syndrome: mutations influence features in early childhood. Am J Med Genet A 2011; 155A (1) 81-90
  • 50 Galván-Manso M, Campistol J, Conill J, Sanmartí FX. Analysis of the characteristics of epilepsy in 37 patients with the molecular diagnosis of Angelman syndrome. Epileptic Disord 2005; 7 (1) 19-25
  • 51 Pelc K, Boyd SG, Cheron G, Dan B. Epilepsy in Angelman syndrome. Seizure 2008; 17 (3) 211-217
  • 52 Thibert RL, Larson AM, Hsieh DT, Raby AR, Thiele EA. Neurologic manifestations of Angelman syndrome. Pediatr Neurol 2013; 48 (4) 271-279
  • 53 Valente KD, Koiffmann CP, Fridman C , et al. Epilepsy in patients with Angelman syndrome caused by deletion of the chromosome 15q11-13. Arch Neurol 2006; 63 (1) 122-128
  • 54 Vendrame M, Loddenkemper T, Zarowski M , et al. Analysis of EEG patterns and genotypes in patients with Angelman syndrome. Epilepsy Behav 2012; 23 (3) 261-265
  • 55 Zanni G, Barresi S, Cohen R , et al. A novel mutation in the endosomal Na+/H+ exchanger NHE6 (SLC9A6) causes Christianson syndrome with electrical status epilepticus during slow-wave sleep (ESES). Epilepsy Res 2014; 108 (4) 811-815
  • 56 Olson H, Shen Y, Avallone J , et al. Copy number variation plays an important role in clinical epilepsy. Ann Neurol 2014; ; 75(6):943–958 PubMed
  • 57 Bahi-Buisson N, Guttierrez-Delicado E, Soufflet C , et al. Spectrum of epilepsy in terminal 1p36 deletion syndrome. Epilepsia 2008; 49 (3) 509-515
  • 58 Battaglia A, Filippi T, South ST, Carey JC. Spectrum of epilepsy and electroencephalogram patterns in Wolf-Hirschhorn syndrome: experience with 87 patients. Dev Med Child Neurol 2009; 51 (5) 373-380
  • 59 Cordelli DM, Garavelli L, Savasta S , et al. Epilepsy in Mowat-Wilson syndrome: delineation of the electroclinical phenotype. Am J Med Genet A 2013; 161A (2) 273-284
  • 60 Elia M, Striano P, Fichera M , et al. 6q terminal deletion syndrome associated with a distinctive EEG and clinical pattern: a report of five cases. Epilepsia 2006; 47 (5) 830-838
  • 61 Kleefstra T, Nillesen WM, Yntema HG . Kleefstra syndrome. In: Pagon RA, Adam MP, Bird TD et al, eds. GeneReviews. Seattle, WA; 1993
  • 62 Philip N, Bassett A. Cognitive, behavioural and psychiatric phenotype in 22q11.2 deletion syndrome. Behav Genet 2011; 41 (3) 403-412
  • 63 Sarasua SM, Boccuto L, Sharp JL , et al. Clinical and genomic evaluation of 201 patients with Phelan-McDermid syndrome. Hum Genet 2014; ; 133(7):847–859 PubMed
  • 64 Valvo G, Novara F, Brovedani P , et al. 22q11.2 Microduplication syndrome and epilepsy with continuous spikes and waves during sleep (CSWS). A case report and review of the literature. Epilepsy Behav 2012; 25 (4) 567-572
  • 65 Heinzen EL, Radtke RA, Urban TJ , et al. Rare deletions at 16p13.11 predispose to a diverse spectrum of sporadic epilepsy syndromes. Am J Hum Genet 2010; 86 (5) 707-718
  • 66 Helbig I, Mefford HC, Sharp AJ , et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009; 41 (2) 160-162
  • 67 Mefford HC, Muhle H, Ostertag P , et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet 2010; 6 (5) e1000962
  • 68 de Kovel CG, Trucks H, Helbig I , et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 2010; 133 (Pt 1) 23-32
  • 69 Mullen SA, Carvill GL, Bellows S , et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 2013; 81 (17) 1507-1514
  • 70 Specchio N, Trivisano M, Serino D , et al. Epilepsy in ring 14 chromosome syndrome. Epilepsy Behav 2012; 25 (4) 585-592
  • 71 Giovannini S, Marangio L, Fusco C , et al. Epilepsy in ring 14 syndrome: a clinical and EEG study of 22 patients. Epilepsia 2013; 54 (12) 2204-2213
  • 72 Elens I, Vanrykel K, De Waele L , et al. Ring chromosome 20 syndrome: electroclinical description of six patients and review of the literature. Epilepsy Behav 2012; 23 (4) 409-414
  • 73 Battaglia A. The inv dup (15) or idic (15) syndrome (tetrasomy 15q). Orphanet J Rare Dis 2008; 3: 30
  • 74 Doherty MJ, Glass IA, Bennett CL , et al. An Xp; Yq translocation causing a novel contiguous gene syndrome in brothers with generalized epilepsy, ichthyosis, and attention deficits. Epilepsia 2003; 44 (12) 1529-1535
  • 75 Gohlke BC, Haug K, Fukami M , et al. Interstitial deletion in Xp22.3 is associated with X linked ichthyosis, mental retardation, and epilepsy. J Med Genet 2000; 37 (8) 600-602
  • 76 van Steensel MA, Vreeburg M, Engelen J , et al. Contiguous gene syndrome due to a maternally inherited 8.41 Mb distal deletion of chromosome band Xp22.3 in a boy with short stature, ichthyosis, epilepsy, mental retardation, cerebral cortical heterotopias and Dandy-Walker malformation. Am J Med Genet A 2008; 146A (22) 2944-2949
  • 77 Li F, Shen Y, Köhler U , et al. Interstitial microduplication of Xp22.31: causative of intellectual disability or benign copy number variant?. Eur J Med Genet 2010; 53 (2) 93-99
  • 78 Meisler MH, Kearney J, Ottman R, Escayg A. Identification of epilepsy genes in human and mouse. Annu Rev Genet 2001; 35: 567-588
  • 79 Helbig I, Lowenstein DH. Genetics of the epilepsies: where are we and where are we going?. Curr Opin Neurol 2013; 26 (2) 179-185
  • 80 Molinari F, Kaminska A, Fiermonte G , et al. Mutations in the mitochondrial glutamate carrier SLC25A22 in neonatal epileptic encephalopathy with suppression bursts. Clin Genet 2009; 76 (2) 188-194
  • 81 Poduri A, Chopra SS, Neilan EG , et al. Homozygous PLCB1 deletion associated with malignant migrating partial seizures in infancy. Epilepsia 2012; 53 (8) e146-e150
  • 82 Saitsu H, Tohyama J, Kumada T , et al. Dominant-negative mutations in alpha-II spectrin cause West syndrome with severe cerebral hypomyelination, spastic quadriplegia, and developmental delay. Am J Hum Genet 2010; 86 (6) 881-891
  • 83 Mills PB, Camuzeaux SS, Footitt EJ , et al. Epilepsy due to PNPO mutations: genotype, environment and treatment affect presentation and outcome. Brain 2014; 137 (Pt 5) 1350-1360
  • 84 Marini C, Mei D, Parmeggiani L , et al. Protocadherin 19 mutations in girls with infantile-onset epilepsy. Neurology 2010; 75 (7) 646-653
  • 85 Paciorkowski AR, Thio LL, Dobyns WB. Genetic and biologic classification of infantile spasms. Pediatr Neurol 2011; 45 (6) 355-367
  • 86 Barcia G, Fleming MR, Deligniere A , et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 2012; 44 (11) 1255-1259
  • 87 Carranza Rojo D, Hamiwka L, McMahon JM , et al. De novo SCN1A mutations in migrating partial seizures of infancy. Neurology 2011; 77 (4) 380-383
  • 88 Coppola G, Plouin P, Chiron C, Robain O, Dulac O. Migrating partial seizures in infancy: a malignant disorder with developmental arrest. Epilepsia 1995; 36 (10) 1017-1024
  • 89 Dhamija R, Wirrell E, Falcao G, Kirmani S, Wong-Kisiel LC. Novel de novo SCN2A mutation in a child with migrating focal seizures of infancy. Pediatr Neurol 2013; 49 (6) 486-488
  • 90 Freilich ER, Jones JM, Gaillard WD , et al. Novel SCN1A mutation in a proband with malignant migrating partial seizures of infancy. Arch Neurol 2011; 68 (5) 665-671
  • 91 Milh M, Falace A, Villeneuve N , et al. Novel compound heterozygous mutations in TBC1D24 cause familial malignant migrating partial seizures of infancy. Hum Mutat 2013; 34 (6) 869-872
  • 92 Poduri A, Heinzen EL, Chitsazzadeh V , et al. SLC25A22 is a novel gene for migrating partial seizures in infancy. Ann Neurol 2013; 74 (6) 873-882
  • 93 Shen J, Gilmore EC, Marshall CA , et al. Mutations in PNKP cause microcephaly, seizures and defects in DNA repair. Nat Genet 2010; 42 (3) 245-249
  • 94 Milh M, Villeneuve N, Chouchane M , et al. Epileptic and nonepileptic features in patients with early onset epileptic encephalopathy and STXBP1 mutations. Epilepsia 2011; 52 (10) 1828-1834
  • 95 Méneret A, Gaudebout C, Riant F, Vidailhet M, Depienne C, Roze E. PRRT2 mutations and paroxysmal disorders. Eur J Neurol 2013; 20 (6) 872-878
  • 96 Pearson TS, Akman C, Hinton VJ, Engelstad K, De Vivo DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep 2013; 13 (4) 342
  • 97 Depienne C, Gourfinkel-An I, Baulac S , et al. Genes in infantile epileptic encephalopathies. In: Noebels JL, Avoli M, Rogawski MA et al, eds. Jasper's Basic Mechanisms of the Epilepsies. 4th ed. Bethesda, MD: National Center for Biotechnology Information; 2012
  • 98 Mastrangelo M, Leuzzi V. Genes of early-onset epileptic encephalopathies: from genotype to phenotype. Pediatr Neurol 2012; 46 (1) 24-31
  • 99 Dravet C, Oguni H. Dravet syndrome (severe myoclonic epilepsy in infancy). Handb Clin Neurol 2013; 111: 627-633
  • 100 Depienne C, Bouteiller D, Keren B , et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet 2009; 5 (2) e1000381
  • 101 Ogiwara I, Nakayama T, Yamagata T , et al. A homozygous mutation of voltage-gated sodium channel β(I) gene SCN1B in a patient with Dravet syndrome. Epilepsia 2012; 53 (12) e200-e203
  • 102 Patino GA, Claes LR, Lopez-Santiago LF , et al. A functional null mutation of SCN1B in a patient with Dravet syndrome. J Neurosci 2009; 29 (34) 10764-10778
  • 103 Harkin LA, Bowser DN, Dibbens LM , et al. Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet 2002; 70 (2) 530-536
  • 104 Carvill GL, Weckhuysen S, McMahon JM , et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology 2014; 82 (14) 1245-1253
  • 105 Kato M, Yamagata T, Kubota M , et al. Clinical spectrum of early onset epileptic encephalopathies caused by KCNQ2 mutation. Epilepsia 2013; 54 (7) 1282-1287
  • 106 Nakamura K, Kato M, Osaka H , et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 2013; 81 (11) 992-998
  • 107 Saitsu H, Kato M, Koide A , et al. Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann Neurol 2012; 72 (2) 298-300
  • 108 Stockler S, Plecko B, Gospe Jr SM , et al. Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 2011; 104 (1-2) 48-60
  • 109 Touma M, Joshi M, Connolly MC , et al. Whole genome sequencing identifies SCN2A mutation in monozygotic twins with Ohtahara syndrome and unique neuropathologic findings. Epilepsia 2013; 54 (5) e81-e85
  • 110 Weckhuysen S, Ivanovic V, Hendrickx R , et al; KCNQ2 Study Group. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 2013; 81 (19) 1697-1703
  • 111 Yu JY, Pearl PL. Metabolic causes of epileptic encephalopathy. Epilepsy Res Treat 2013; 2013: 124934
  • 112 Nicita F, De Liso P, Danti FR , et al. The genetics of monogenic idiopathic epilepsies and epileptic encephalopathies. Seizure 2012; 21 (1) 3-11
  • 113 Epi KC ; Epi4K Consortium. Epi4K: gene discovery in 4,000 genomes. Epilepsia 2012; 53 (8) 1457-1467
  • 114 Mefford HC, Yendle SC, Hsu C , et al. Rare copy number variants are an important cause of epileptic encephalopathies. Ann Neurol 2011; 70 (6) 974-985
  • 115 Paciorkowski AR, Thio LL, Rosenfeld JA , et al. Copy number variants and infantile spasms: evidence for abnormalities in ventral forebrain development and pathways of synaptic function. Eur J Hum Genet 2011; 19 (12) 1238-1245
  • 116 Striano P, Coppola A, Paravidino R , et al. Clinical significance of rare copy number variations in epilepsy: a case-control survey using microarray-based comparative genomic hybridization. Arch Neurol 2012; 69 (3) 322-330
  • 117 Matalon D, Goldberg E, Medne L, Marsh ED. Confirming an expanded spectrum of SCN2A mutations: a case series. Epileptic Disord 2014; 16 (1) 13-18
  • 118 Shi X, Yasumoto S, Kurahashi H , et al. Clinical spectrum of SCN2A mutations. Brain Dev 2012; 34 (7) 541-545
  • 119 Singh NA, Westenskow P, Charlier C , et al; BFNC Physician Consortium. KCNQ2 and KCNQ3 potassium channel genes in benign familial neonatal convulsions: expansion of the functional and mutation spectrum. Brain 2003; 126 (Pt 12) 2726-2737
  • 120 Orhan G, Bock M, Schepers D , et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol 2014; 75 (3) 382-394
  • 121 Chabrol B, Caillaud C, Minassian B. Neuronal ceroid lipofuscinoses. Handb Clin Neurol 2013; 113: 1701-1706
  • 122 Ramachandran N, Girard JM, Turnbull J, Minassian BA. The autosomal recessively inherited progressive myoclonus epilepsies and their genes. Epilepsia 2009; 50 (Suppl. 05) 29-36
  • 123 Girard JM, Turnbull J, Ramachandran N, Minassian BA. Progressive myoclonus epilepsy. Handb Clin Neurol 2013; 113: 1731-1736
  • 124 Franceschetti S, Michelucci R, Canafoglia L , et al; Collaborative LICE study group on PMEs. Progressive myoclonic epilepsies: definitive and still undetermined causes. Neurology 2014; 82 (5) 405-411
  • 125 Delgado-Escueta AV, Koeleman BP, Bailey JN, Medina MT, Durón RM. The quest for juvenile myoclonic epilepsy genes. Epilepsy Behav 2013; 28 (Suppl. 01) S52-S57
  • 126 Taske NL, Williamson MP, Makoff A , et al. Evaluation of the positional candidate gene CHRNA7 at the juvenile myoclonic epilepsy locus (EJM2) on chromosome 15q13-14. Epilepsy Res 2002; 49 (2) 157-172
  • 127 Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch 2010; 460 (2) 395-403
  • 128 Kleefuss-Lie A, Friedl W, Cichon S , et al. CLCN2 variants in idiopathic generalized epilepsy. Nat Genet 2009; 41 (9) 954-955
  • 129 Rajakulendran S, Graves TD, Labrum RW , et al. Genetic and functional characterisation of the P/Q calcium channel in episodic ataxia with epilepsy. J Physiol 2010; 588 (Pt 11) 1905-1913
  • 130 Noebels JL. The voltage-gated calcium channel and absence epilepsy. In: Noebels JL, Avoli M, Rogawski MA et al, eds. Jasper's Basic Mechanisms of the Epilepsies. 4th ed. Bethesda (MD); National Center for Biotechnology Information; 2012
  • 131 Ottman R, Hirose S, Jain S , et al. Genetic testing in the epilepsies—report of the ILAE Genetics Commission. Epilepsia 2010; 51 (4) 655-670
  • 132 Heron SE, Smith KR, Bahlo M , et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 2012; 44 (11) 1188-1190
  • 133 Ho YY, Ionita-Laza I, Ottman R. Domain-dependent clustering and genotype-phenotype analysis of LGI1 mutations in ADPEAF. Neurology 2012; 78 (8) 563-568
  • 134 Fassio A, Patry L, Congia S , et al. SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function. Hum Mol Genet 2011; 20 (12) 2297-2307
  • 135 Dibbens LM, de Vries B, Donatello S , et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat Genet 2013; 45 (5) 546-551
  • 136 Ishida S, Picard F, Rudolf G , et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat Genet 2013; 45 (5) 552-555
  • 137 Lal D, Reinthaler EM, Schubert J , et al. DEPDC5 mutations in genetic focal epilepsies of childhood. Ann Neurol 2014; ; 75(5):788–792
  • 138 Martin C, Meloche C, Rioux MF , et al. A recurrent mutation in DEPDC5 predisposes to focal epilepsies in the French-Canadian population. Clin Genet 2013; [Epub ahead of print]
  • 139 Scheffer IE, Heron SE, Regan BM , et al. Mutations in mammalian target of rapamycin regulator DEPDC5 cause focal epilepsy with brain malformations. Ann Neurol 2014; ; 75(5):782–787
  • 140 Gregor A, Albrecht B, Bader I , et al. Expanding the clinical spectrum associated with defects in CNTNAP2 and NRXN1. BMC Med Genet 2011; 12: 106
  • 141 Carvill GL, Regan BM, Yendle SC , et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet 2013; 45 (9) 1073-1076
  • 142 Lemke JR, Lal D, Reinthaler EM , et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet 2013; 45 (9) 1067-1072
  • 143 Lesca G, Rudolf G, Bruneau N , et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet 2013; 45 (9) 1061-1066
  • 144 Endele S, Rosenberger G, Geider K , et al. Mutations in GRIN2A and GRIN2B encoding regulatory subunits of NMDA receptors cause variable neurodevelopmental phenotypes. Nat Genet 2010; 42 (11) 1021-1026
  • 145 Poretti B. Brain malformations and migrational defects. Semin Neurol 2014; in press
  • 146 Heinzen EL, Swoboda KJ, Hitomi Y , et al; European Alternating Hemiplegia of Childhood (AHC) Genetics Consortium; Biobanca e Registro Clinico per l'Emiplegia Alternante (I.B.AHC) Consortium; European Network for Research on Alternating Hemiplegia (ENRAH) for Small and Medium-sized Enterpriese (SMEs) Consortium. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet 2012; 44 (9) 1030-1034
  • 147 Rosewich H, Thiele H, Ohlenbusch A , et al. Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol 2012; 11 (9) 764-773
  • 148 Sasaki M, Ishii A, Saito Y , et al. Genotype-phenotype correlations in alternating hemiplegia of childhood. Neurology 2014; 82 (6) 482-490
  • 149 Ishii A, Saito Y, Mitsui J , et al. Identification of ATP1A3 mutations by exome sequencing as the cause of alternating hemiplegia of childhood in Japanese patients. PLoS ONE 2013; 8 (2) e56120
  • 150 Swoboda KJ, Kanavakis E, Xaidara A , et al. Alternating hemiplegia of childhood or familial hemiplegic migraine? A novel ATP1A2 mutation. Ann Neurol 2004; 55 (6) 884-887
  • 151 Bianchin MM, Londero RG, Lima JE, Bigal ME. Migraine and epilepsy: a focus on overlapping clinical, pathophysiological, molecular, and therapeutic aspects. Curr Pain Headache Rep 2010; 14 (4) 276-283
  • 152 Silberstein SD, Dodick DW. Migraine genetics: Part II. Headache 2013; 53 (8) 1218-1229
  • 153 Roth C, Freilinger T, Kirovski G , et al. Clinical spectrum in three families with familial hemiplegic migraine type 2 including a novel mutation in the ATP1A2 gene. Cephalalgia 2014; 34 (3) 183-190
  • 154 Mignot C, Moutard ML, Trouillard O , et al. STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor in three patients. Epilepsia 2011; 52 (10) 1820-1827
  • 155 Scheffer IE. Epilepsy genetics revolutionizes clinical practice. Neuropediatrics 2014; 45 (2) 70-74
  • 156 Bahi-Buisson N, Dulac O. Epilepsy in inborn errors of metabolism. Handb Clin Neurol 2013; 111: 533-541
  • 157 Bindoff LA, Engelsen BA. Mitochondrial diseases and epilepsy. Epilepsia 2012; 53 (Suppl. 04) 92-97
  • 158 Khurana DS, Valencia I, Goldenthal MJ, Legido A. Mitochondrial dysfunction in epilepsy. Semin Pediatr Neurol 2013; 20 (3) 176-187
  • 159 Leuzzi V, Mastrangelo M, Battini R, Cioni G. Inborn errors of creatine metabolism and epilepsy. Epilepsia 2013; 54 (2) 217-227
  • 160 Pearl PL, Gospe Jr SM. Pyridoxine or pyridoxal-5′-phosphate for neonatal epilepsy: The distinction just got murkier. Neurology 2014; ; 22;82(16):1392–1394
  • 161 van der Crabben SN, Verhoeven-Duif NM, Brilstra EH , et al. An update on serine deficiency disorders. J Inherit Metab Dis 2013; 36 (4) 613-619
  • 162 Chiron C, Dulac O. The pharmacologic treatment of Dravet syndrome. Epilepsia 2011; 52 (Suppl. 02) 72-75
  • 163 Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998; 39 (5) 508-512
  • 164 Cavalleri GL, McCormack M, Alhusaini S, Chaila E, Delanty N. Pharmacogenomics and epilepsy: the road ahead. Pharmacogenomics 2011; 12 (10) 1429-1447
  • 165 Walleigh DJ, Legido A, Valencia I. Ring chromosome 20: a pediatric potassium channelopathy responsive to treatment with ezogabine. Pediatr Neurol 2013; 49 (5) 368-369
  • 166 Sheidley BR, Poduri A. Genetics in clinical epilepsy: Issues in genetic testing and counseling. J Ped Epil 2012; 1: 135-142