Z Gastroenterol 2015; 53(01): 33-39
DOI: 10.1055/s-0034-1385398
Originalarbeit
© Georg Thieme Verlag KG Stuttgart · New York

MALDI imaging-based classification of hepatocellular carcinoma and non-malignant lesions in fibrotic liver tissue

Klassifikation des hepatozellulären Karzinoms und nicht-maligner Läsionen im fibrotischen Lebergewebe mittels bildgebender Massenspektrometrie
C. Marquardt
1   Department of InternaI Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Jena
,
T. Tolstik
1   Department of InternaI Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Jena
,
C. Bielecki
1   Department of InternaI Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Jena
,
R. Kaufmann
2   Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena
,
A. C. Crecelius
3   Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena
4   Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena
,
U. S. Schubert
3   Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University Jena
4   Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena
,
U. Settmacher
2   Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena
4   Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena
,
A. Stallmach
1   Department of InternaI Medicine IV, Gastroenterology, Hepatology and Infectious Diseases, Jena University Hospital, Jena
,
O. Dirsch
5   Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena
› Author Affiliations
Further Information

Publication History

09 March 2014

25 September 2014

Publication Date:
16 January 2015 (online)

Abstract

Histopathologic differentiation of nodular lesions in cirrhotic liver is difficult even for experienced hepatopathologists especially regarding diagnosis of hepatocellular carcinoma (HCC) in biopsies. For this reason, new tissue markers are needed to reinforce histopathologic decision-making. With advances in molecular techniques, proteomic analysis may help to confirm the diagnosis of HCC. Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a powerful technology which allows to determine and to localize proteins directly in tissue sections. Using MALDI IMS proteomic patterns of cryosections with lesions of HCC (n = 15) and non-malignant fibrotic liver tissue (n = 11) were investigated to establish a classification model of HCC, which was validated in an independent set of tissue to distinguish HCC (n = 10) from regenerative nodules (n = 8). By correlating generated mass spectrometric images with the histology of the tissue sections we found that the expression of 4 proteins as indicated by m/z 6274, m/z 6647, m/z 6222 and m/z 6853 was significantly higher in HCC tissue than in non-tumorous liver tissue. The generated classification model based on the most significant 3 differentially expressed proteins allowed a reliable prediction of benign and malignant lesions in fibrotic liver tissue with a sensitivity and specificity of 90 % in the validation set. The identified MALDI IMS proteomic signature can be diagnostically helpful to allow simplifying the diagnostic process and minimize the risks of delays in establishing the objective final diagnosis and initiating treatment of patients with HCC.

Zusammenfassung

Die histopathologische Differenzierung nodulärer Läsionen in der zirrhotischen Leber ist für Pathologen schwierig, insbesondere in Biopsiematerial. Es werden daher neue Gewebemarker benötigt, um die histopathologische Entscheidung zu stützen. Die bildgebende Massenspektrometrie (Matrix-assisted laser desorption/ionization imaging mass spectrometry – MALDI-IMS) ist eine leistungsfähige Technologie, die es ermöglicht, Proteine direkt im Gewebe zu detektieren und zu lokalisieren, und es ggf. erlaubt, die Diagnose eines hepatozellulären Karzinoms (HCC) zu bestätigen.

In dieser Arbeit wurden proteomische Muster in Kryostatschnitten von Läsionen des HCC (n = 15) und von nicht-malignem fibrotischem Lebergewebe (n = 11) mittels MALDI-IMS untersucht. Durch die Korrelation der erzeugten massenspektrometrischen Bilder mit der Histologie des entsprechenden Gewebeschnitts konnten 4 Proteine mit den m/z-Werten 6274, 6647, 6222 und 6853 identifiziert werden, die eine signifikant höhere Expression im HCC-Gewebe im Vergleich zur Fibrose aufweisen. Basierend auf 3 dieser Proteine mit der höchsten Signifikanz wurde ein Klassifikationsmodell erstellt und an einer unabhängigen Gruppe von Gewebeproben des HCC (n = 10) und benigner Regeneratknoten (n = 8) validiert. Mit diesem Klassifikationsmodell konnte eine verlässliche Vorhersage zwischen benignen und malignen Läsionen im fibrotischen Lebergewebe mit einer Sensitivität und Spezifität von 90 % getroffen werden. Diese identifizierte MALDI-IMS-Proteomsignatur kann zukünftig hilfreich sein, um eine endgültige und objektive Erstellung der Diagnose zu vereinfachen und so das Risiko von Verzögerungen bei der Diagnosebestimmung sowie der Therapieeinleitung von HCC-Patienten zu minimieren.

 
  • References

  • 1 Parkin DM, Bray F, Ferlay J et al. Global Cancer Statistics, 2002. CA Cancer J Clin 2005; 55: 74-108
  • 2 Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. The Lancet 2003; 362: 1907-1917
  • 3 Poon D, Anderson BO, Chen LT et al. Management of hepatocellular carcinoma in Asia: consensus statement from the Asian Oncology Summit 2009. Lancet Oncol 2009; 10: 1111-1118
  • 4 Sherman M. Epidemiology of hepatocellular carcinoma. Oncology 2010; 78 (Suppl. 01) 7-10
  • 5 Neoplasia ICG for H. Pathologic diagnosis of early hepatocellular carcinoma: A report of the international consensus group for hepatocellular neoplasia. Hepatology 2009; 49: 658-664
  • 6 Di Tommaso L, Destro A, Seok JY et al. The application of markers (HSP70 GPC3 and GS) in liver biopsies is useful for detection of hepatocellular carcinoma. J Hepatol 2009; 50: 746-754
  • 7 Bruix J, Sherman M. Management of hepatocellular carcinoma: An update. Hepatol Baltim Md 2011; 53: 1020-1022
  • 8 Stoeckli M, Chaurand P, Hallahan DE et al. Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 2001; 7: 493-496
  • 9 Schwartz SA, Weil RJ, Thompson RC et al. proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res 2005; 65: 7674-7681
  • 10 Chaurand P, Schwartz SA, Caprioli RM. Assessing protein patterns in disease using imaging mass spectrometry. J Proteome Res 2004; 3: 245-252
  • 11 Chaurand P, Sanders ME, Jensen RA et al. Proteomics in diagnostic pathology: profiling and imaging proteins directly in tissue sections. Am J Pathol 2004; 165: 1057-1068
  • 12 Rauser S, Marquardt C, Balluff B et al. Classification of HER2 receptor status in breast cancer tissues by MALDI imaging mass spectrometry. J Proteome Res 2010; 9: 1854-1863
  • 13 Reyzer ML, Caldwell RL, Dugger TC et al. Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res 2004; 64: 9093-9100
  • 14 Bauer JA, Chakravarthy AB, Rosenbluth JM et al. Identification of markers of taxane sensitivity using proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin Cancer Res 2010; 16: 681-690
  • 15 Seeley EH, Caprioli RM. Imaging mass spectrometry: Towards clinical diagnostics. PROTEOMICS – Clin Appl 2008; 2: 1435-1443
  • 16 Seeley EH, Caprioli RM. Molecular imaging of proteins in tissues by mass spectrometry. Proc Natl Acad Sci USA 2008; 105: 18126-18131
  • 17 Kim HK, Reyzer ML, Choi IJ et al. Gastric cancer-specific protein profile identified using endoscopic biopsy samples via MALDI mass spectrometry. J Proteome Res 2010; 9: 4123-4130
  • 18 Morita Y, Ikegami K, Goto-Inoue N et al. Imaging mass spectrometry of gastric carcinoma in formalin-fixed paraffin-embedded tissue microarray. Cancer Sci 2010; 101: 267-273
  • 19 Deininger SO, Ebert MP, Fütterer A et al. MALDI imaging combined with hierarchical clustering as a new tool for the interpretation of complex human cancers. J Proteome Res 2008; 7: 5230-5236
  • 20 Balluff B, Elsner M, Kowarsch A et al. Classification of HER2/neu status in gastric cancer using a breast-cancer derived proteome classifier. J Proteome Res 2010; 9: 6317-6322
  • 21 Groseclose MR, Massion PP, Chaurand P et al. High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry. Proteomics 2008; 8: 3715-3724
  • 22 Yanagisawa K, Shyr Y, Xu BJ et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 2003; 362: 433-439
  • 23 Patel SA, Barnes A, Loftus N et al. Imaging mass spectrometry using chemical inkjet printing reveals differential protein expression in human oral squamous cell carcinoma. The Analyst 2009; 134: 301-307
  • 24 Lemaire R, Menguellet SA, Stauber J et al. Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res 2007; 6: 4127-4134
  • 25 Kang S, Shim HS, Lee JS et al. Molecular proteomics imaging of tumor interfaces by mass spectrometry. J Proteome Res 2010; 9: 1157-1164
  • 26 Djidja M-C, Claude E, Snel MF et al. MALDI-ion mobility separation-mass spectrometry imaging of glucose-regulated protein 78 kDa (Grp78) in human formalin-fixed, paraffin-embedded pancreatic adenocarcinoma tissue sections. J Proteome Res 2009; 8: 4876-4884
  • 27 Walch A, Rauser S, Deininger S-O et al. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol 2008; 130: 421-434
  • 28 Schwamborn K, Krieg RC, Reska M et al. Identifying prostate carcinoma by MALDI-Imaging. Int J Mol Med 2007; 20: 155-159
  • 29 Cazares LH, Troyer D, Mendrinos S et al. Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin Cancer Res 2009; 15: 5541-5551
  • 30 Oppenheimer SR, Mi D, Sanders ME et al. Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma. J Proteome Res 2010; 9: 2182-2190
  • 31 Meding S, Nitsche U, Balluff B et al. Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J Proteome Res 2012; 11: 1996-2003
  • 32 Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics 2007; 23: 2507-2517
  • 33 Balluff B, Schöne C, Höfler H et al. MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 2011; 136: 227-244
  • 34 Pucci P, Siciliano R, Malorni A et al. Human alpha-fetoprotein primary structure: a mass spectrometric study. Biochemistry (Mosc) 1991; 30: 5061-5066
  • 35 Ho M, Kim H. Glypican-3: a new target for cancer immunotherapy. Eur J Cancer Oxf Engl 2011; 47: 333-338
  • 36 Sherman M, Multhoff G. Heat shock proteins in cancer. Ann N Y Acad Sci 2007; 1113: 192-201
  • 37 Osada T, Sakamoto M, Nagawa H et al. Acquisition of glutamine synthetase expression in human hepatocarcinogenesis: relation to disease recurrence and possible regulation by ubiquitin-dependent proteolysis. Cancer 1999; 85: 819-831
  • 38 Le Faouder J, Laouirem S, Chapelle M et al. Imaging mass spectrometry provides fingerprints for distinguishing hepatocellular carcinoma from cirrhosis. J Proteome Res 2011; 10: 3755-3765
  • 39 Laouirem S, Le Faouder J, Alexandrov T et al. Progression from cirrhosis to cancer is associated with early ubiquitin post-translational modifications: identification of new biomarkers of cirrhosis at risk of malignancy. J Pathol 2014;
  • 40 Poté N, Alexandrov T, Le Faouder J et al. Imaging mass spectrometry reveals modified forms of histone H4 as new biomarkers of microvascular invasion in hepatocellular carcinomas. Hepatol Baltim Md 2013; 58: 983-994
  • 41 Han EC, Lee YS, Liao WS et al. Direct tissue analysis by MALDI-TOF mass spectrometry in human hepatocellular carcinoma. Clin Chim Acta 2011; 412: 230-239