Der Nuklearmediziner 2014; 37(03): 181-189
DOI: 10.1055/s-0034-1375670
Benigne und maligne Lungenerkrankungen
© Georg Thieme Verlag KG Stuttgart · New York

FDG-PET bei entzündlichen Erkrankungen der Lunge

FDG-PET Imaging in Inflammatory Lung Disease
E. Aarntzen
1   Afdeling Radiologie en Nucleaire Geneeskunde Radboudumc, Nijmegen, Nederland
,
L.-F. de Geus-Oei
1   Afdeling Radiologie en Nucleaire Geneeskunde Radboudumc, Nijmegen, Nederland
,
M. Gotthardt
1   Afdeling Radiologie en Nucleaire Geneeskunde Radboudumc, Nijmegen, Nederland
› Author Affiliations
Further Information

Publication History

Publication Date:
18 August 2014 (online)

Zusammenfassung

Entzündliche Erkrankungen der Lunge sind meistens ein (häufiger) Nebenbefund bei der FDG-PET, die für die Diagnostik von Malignomen ausgeführt wird. Vielfach ergibt sich dadurch ein differenzialdiagnostisches Problem, da die Spezifität der PET nur aufgrund der FDG-Aufnahme eine eindeutige Differenzierung zwischen Metastase/Tumor und entzündlicher Ursache nicht verlässlich ermöglicht. Daher ist die Erkennung bestimmter Muster und die korrekte Interpretation der Verteilung von Läsionen im klinischen Kontext entscheidend für den Beitrag der PET für das klinische Management der Patienten. In dieser Arbeit wird eine Übersicht über die möglichen Ursachen und pathophysiologischen Mechanismen entzündlicher Veränderungen in der Lunge (bakteriell, Pilze, Hefen, Mycobakterien, interstitielle Lungenerkrankungen, Pneumonitis usw.) sowie typische Muster in der PET gegeben, inklusive der Differenzialdiagnosen und Hinweisen zur Bildinterpretation.

Abstract

Inflammatory lung diseases are frequently found on PET scans performed for the work-up of patients with malignancies. In many if not most cases, the ability of PET imaging to differentiate between inflammation and malignancy is limited due to low specificity, which often causes a diagnostic dilemma. Therefore, recognition of uptake patterns as well as distribution of lesions in the clinical context is of crucial importance for the role of PET scans in the clinical management of patients. In this paper, an overview of potential causes and pathophysiological mechanisms of inflammatory lung pathology is provided (bacteria, fungi, yeast, mycobacteria, interstitial lung disease, pneumonitis etc.) together with typical patterns of FDG uptake, including possible differential diagnoses as well as suggestions for image interpretation.

 
  • Literatur

  • 1 Ahn BC, Lee SW, Lee J et al. Pulmonary aspergilloma mimicking metastasis from papillary thyroid cancer. Thyroid: official journal of the American Thyroid Association 2011; 21: 555-558
  • 2 Aide N, Benayoun M, Kerrou K et al. Impact of [18 F]-fluorodeoxyglucose ([18 F]-FDG) imaging in sarcoidosis: unsuspected neurosarcoidosis discovered by [18 F]-FDG PET and early metabolic response to corticosteroid therapy. The British journal of radiology 2007; 80: e67-e71
  • 3 Amin R, Charron M, Grinblat L et al. Cystic fibrosis: detecting changes in airway inflammation with FDG PET/CT. Radiology 2012; 264: 868-875
  • 4 Bakheet SM, Powe J. Fluorine-18-fluorodeoxyglucose uptake in rheumatoid arthritis-associated lung disease in a patient with thyroid cancer. J Nucl Med 1998; 39: 234-236
  • 5 Basu S, Zhuang H, Torigian DA et al. Functional imaging of inflammatory diseases using nuclear medicine techniques. Seminars in nuclear medicine 2009; 39: 124-145
  • 6 Baxter CG, Bishop P, Low SE et al. Pulmonary aspergillosis: an alternative diagnosis to lung cancer after positive [18 F]FDG positron emission tomography. Thorax 2011; 66: 638-640
  • 7 Baydur A. Recent developments in the physiological assessment of sarcoidosis: clinical implications. Current opinion in pulmonary medicine 2012; 18: 499-505
  • 8 Bianco A, Mazzarella G, Rocco D et al. FDG/PET uptake in asymptomatic multilobar Chlamydia pneumoniae pneumonia. Medical science monitor: international medical journal of experimental and clinical research 2010; 16: CS67-CS70
  • 9 Bleeker-Rovers CP. <Bleeker-RoversC2005_ClinMicrobiolInfect.pdf>. Clinical Microbiology and Infection 2005;
  • 10 Boellaard R. Methodological aspects of multicenter studies with quantitative PET. Methods in molecular biology 2011; 727: 335-349
  • 11 Castaigne C, Tondeur M, de Wit S et al. Clinical value of FDG-PET/CT for the diagnosis of human immunodeficiency virus-associated fever of unknown origin: a retrospective study. Nuclear medicine communications 2009; 30: 41-47
  • 12 Castor CW, Heiss PR, Gray RH et al. Connective tissue formation by lung fibroblasts in vitro. The American review of respiratory disease 1979; 120: 107-119
  • 13 Chen CJ, Lee BF, Yao WJ et al. Dual-phase 18 F-FDG PET in the diagnosis of pulmonary nodules with an initial standard uptake value less than 2.5. AJR American journal of roentgenology 2008; 191: 475-479
  • 14 Chen DL, Rosenbluth DB, Mintun MA et al. FDG-PET imaging of pulmonary inflammation in healthy volunteers after airway instillation of endotoxin. J Appl Physiol (1985) 2006; 100: 1602-1609
  • 15 Chen DL, Schuster DP. Imaging pulmonary inflammation with positron emission tomography: a biomarker for drug development. Molecular pharmaceutics 2006; 3: 488-495
  • 16 Chen DL, Atkinson JJ, Ferkol TW. FDG PET imaging in cystic fibrosis. Seminars in nuclear medicine 2013; 43: 412-419
  • 17 Chen DL, Wang X, Yamamoto S et al. Increased T cell glucose uptake reflects acute rejection in lung grafts. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2013; 13: 2540-2549
  • 18 Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 2012; 379: 1341-1351
  • 19 Demura Y, Tsuchida T, Uesaka D et al. Usefulness of 18 F-fluorodeoxyglucose positron emission tomography for diagnosing disease activity and monitoring therapeutic response in patients with pulmonary mycobacteriosis. European journal of nuclear medicine and molecular imaging 2009; 36: 632-639
  • 20 El-Chemaly S, Malide D, Yao J et al. Glucose transporter-1 distribution in fibrotic lung disease: association with [(1)(8)F]-2-fluoro-2-deoxyglucose-PET scan uptake, inflammation, and neovascularization. Chest 2013; 143: 1685-1691
  • 21 Fireman E, Shahar I, Shoval S et al. Morphological and biochemical properties of alveolar fibroblasts in interstitial lung diseases. Lung 2001; 179: 105-117
  • 22 Folco EJ, Sheikine Y, Rocha VZ et al. Hypoxia but not inflammation augments glucose uptake in human macrophages: Implications for imaging atherosclerosis with 18fluorine-labeled 2-deoxy-D-glucose positron emission tomography. Journal of the American College of Cardiology 2011; 58: 603-614
  • 23 Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nature reviews Immunology 2005; 5: 844-852
  • 24 Gotthardt M, Bleeker-Rovers CP, Boerman OC et al. Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J Nucl Med 2010; 51: 1937-1949
  • 25 Groves AM, Win T, Screaton NJ et al. Idiopathic pulmonary fibrosis and diffuse parenchymal lung disease: implications from initial experience with 18 F-FDG PET/CT. J Nucl Med 2009; 50: 538-545
  • 26 Guerrero T, Johnson V, Hart J et al. Radiation pneumonitis: local dose versus [18 F]-fluorodeoxyglucose uptake response in irradiated lung. International journal of radiation oncology, biology, physics 2007; 68: 1030-1035
  • 27 Haeusler GM, Slavin MA, Seymour JF et al. Late-onset Pneumocystis jirovecii pneumonia post-fludarabine, cyclophosphamide and rituximab: implications for prophylaxis. European journal of haematology 2013; 91: 157-163
  • 28 Hahm CR, Park HY, Jeon K et al. Solitary pulmonary nodules caused by Mycobacterium tuberculosis and Mycobacterium avium complex. Lung 2010; 188: 25-31
  • 29 Halbert RJ, Natoli JL, Gano A et al. Global burden of COPD: systematic review and meta-analysis. The European respiratory journal 2006; 28: 523-532
  • 30 Hansson L, Ohlsson T, Valind S et al. Glucose utilisation in the lungs of septic rats. European journal of nuclear medicine 1999; 26: 1340-1344
  • 31 Hofmeyr A, Lau WF, Slavin MA. Mycobacterium tuberculosis infection in patients with cancer, the role of 18-fluorodeoxyglucose positron emission tomography for diagnosis and monitoring treatment response. Tuberculosis (Edinb) 2007; 87: 459-463
  • 32 Hot A, Maunoury C, Poiree S et al. Diagnostic contribution of positron emission tomography with [18 F]fluorodeoxyglucose for invasive fungal infections. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2011; 17: 409-417
  • 33 Ichiya Y, Kuwabara Y, Sasaki M et al. FDG-PET in infectious lesions: The detection and assessment of lesion activity. Ann Nucl Med 1996; 10: 185-191
  • 34 Inoue K, Okada K, Taki Y et al. 18)FDG uptake associated with CT density on PET/CT in lungs with and without chronic interstitial lung diseases. Ann Nucl Med 2009; 23: 277-281
  • 35 Jones HA, Clark RJ, Rhodes CG et al. In vivo measurement of neutrophil activity in experimental lung inflammation. American journal of respiratory and critical care medicine 1994; 149: 1635-1639
  • 36 Jones HA, Sriskandan S, Peters AM et al. Dissociation of neutrophil emigration and metabolic activity in lobar pneumonia and bronchiectasis. The European respiratory journal 1997; 10: 795-803
  • 37 Jones HA, Cadwallader KA, White JF et al. Dissociation between respiratory burst activity and deoxyglucose uptake in human neutrophil granulocytes: implications for interpretation of (18)F-FDG PET images. J Nucl Med 2002; 43: 652-657
  • 38 Jones HA, Donovan T, Goddard MJ et al. Use of 18FDG-pet to discriminate between infection and rejection in lung transplant recipients. Transplantation 2004; 77: 1462-1464
  • 39 Kamel EM, McKee TA, Calcagni ML et al. Occult lung infarction may induce false interpretation of 18 F-FDG PET in primary staging of pulmonary malignancies. European journal of nuclear medicine and molecular imaging 2005; 32: 641-646
  • 40 Kaneko K, Sadashima E, Irie K et al. Assessment of FDG retention differences between the FDG-avid benign pulmonary lesion and primary lung cancer using dual-time-point FDG-PET imaging. Ann Nucl Med 2013; 27: 392-399
  • 41 Kim IJ, Lee JS, Kim SJ et al. Double-phase 18 F-FDG PET-CT for determination of pulmonary tuberculoma activity. European journal of nuclear medicine and molecular imaging 2008; 35: 808-814
  • 42 Kim Y. <KimY2013_JCAT.pdf>. Journal of Computer Assisted Tomography 2013;
  • 43 Klein M, Cohen-Cymberknoh M, Armoni S et al. 18 F-fluorodeoxyglucose-PET/CT imaging of lungs in patients with cystic fibrosis. Chest 2009; 136: 1220-1228
  • 44 Kubota R, Yamada S, Kubota K et al. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med 1992; 33: 1972-1980
  • 45 Kubota R. <KubotaR1994_JNM.pdf>. J Nucl Med 1994;
  • 46 Liu Y. Demonstrations of AIDS-associated malignancies and infections at FDG PET-CT. Ann Nucl Med 2011; 25: 536-546
  • 47 Mac Manus MP, Ding Z, Hogg A et al. Association between pulmonary uptake of fluorodeoxyglucose detected by positron emission tomography scanning after radiation therapy for non-small-cell lung cancer and radiation pneumonitis. International journal of radiation oncology, biology, physics 2011; 80: 1365-1371
  • 48 Mahfouz T, Miceli MH, Saghafifar F et al. 18 F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: a study of 165 infectious episodes. Journal of clinical oncology: official journal of the American Society of Clinical Oncology 2005; 23: 7857-7863
  • 49 Mamede M, Higashi T, Kitaichi M et al. [18 F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 2005; 7: 369-379
  • 50 Martinez V, Castilla-Lievre MA, Guillet-Caruba C et al. (18)F-FDG PET/CT in tuberculosis: an early non-invasive marker of therapeutic response. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease 2012; 16: 1180-1185
  • 51 McCurdy M, McAleer MF, Wei W et al. Induction and concurrent taxanes enhance both the pulmonary metabolic radiation response and the radiation pneumonitis response in patients with esophagus cancer. International journal of radiation oncology, biology, physics 2010; 76: 816-823
  • 52 Nakazato T, Mihara A, Sanada Y et al. Pneumocystis jiroveci pneumonia detected by FDG-PET. Annals of hematology 2010; 89: 839-840
  • 53 Nusair S, Rubinstein R, Freedman NM et al. Positron emission tomography in interstitial lung disease. Respirology 2007; 12: 843-847
  • 54 Ogawa M, Nakamura S, Saito Y et al. What can be seen by 18 F-FDG PET in atherosclerosis imaging? The effect of foam cell formation on 18 F-FDG uptake to macrophages in vitro. J Nucl Med 2012; 53: 55-58
  • 55 Ozsahin H, von Planta M, Muller I et al. Successful treatment of invasive aspergillosis in chronic granulomatous disease by bone marrow transplantation, granulocyte colony-stimulating factor-mobilized granulocytes, and liposomal amphotericin-B. Blood 1998; 92: 2719-2724
  • 56 Palsson-McDermott EM, O’Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. BioEssays: news and reviews in molecular, cellular and developmental biology 2013; 35: 965-973
  • 57 Petit SF, van Elmpt WJ, Oberije CJ et al. [(1)(8)F]fluorodeoxyglucose uptake patterns in lung before radiotherapy identify areas more susceptible to radiation-induced lung toxicity in non-small-cell lung cancer patients. International journal of radiation oncology, biology, physics 2011; 81: 698-705
  • 58 Quail DF, Joyce JA. Microenvironmental regulation of tumor progres­sion and metastasis. Nature medicine 2013; 19: 1423-1437
  • 59 Reid AB, Chen SC, Worth LJ. Pneumocystis jirovecii pneumonia in non-HIV-infected patients: new risks and diagnostic tools. Current opinion in infectious diseases 2011; 24: 534-544
  • 60 Sathekge M, Maes A, Kgomo M et al. Van de Wiele C. Use of 18 F-FDG PET to predict response to first-line tuberculostatics in HIV-associated tuberculosis. J Nucl Med 2011; 52: 880-885
  • 61 Sathekge MM, Maes A, Pottel H et al. Dual time-point FDG PET-CT for differentiating benign from malignant solitary pulmonary nodules in a TB endemic area. South African medical journal=Suid-Afrikaanse tydskrif vir geneeskunde 2010; 100: 598-601
  • 62 Schreiter N, Nogami M, Buchert R et al. Pulmonary FDG uptake without a CT counterpart – a pitfall in interpreting PET/CT images. Acta radiologica 2011; 52: 513-515
  • 63 Sojan SM, Chew G. Pneumocystis carinii pneumonia on F-18 FDG PET. Clin Nucl Med 2005; 30: 763-764
  • 64 Sonet A, Graux C, Nollevaux MC et al. Unsuspected FDG-PET findings in the follow-up of patients with lymphoma. Annals of hematology 2007; 86: 9-15
  • 65 Tateishi U, Hasegawa T, Seki K et al. Disease activity and 18 F-FDG uptake in organising pneumonia: semi-quantitative evaluation using computed tomography and positron emission tomography. European journal of nuclear medicine and molecular imaging 2006; 33: 906-912
  • 66 Teirstein AS, Machac J, Almeida O et al. Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest 2007; 132: 1949-1953
  • 67 Treglia G, Taralli S, Calcagni ML et al. Is there a role for fluorine 18 fluorodeoxyglucose-positron emission tomography and positron emission tomography/computed tomography in evaluating patients with mycobacteriosis? A systematic review. J Comput Assist Tomogr 2011; 35: 387-393
  • 68 Umeda Y, Demura Y, Ishizaki T et al. Dual-time-point 18 F-FDG PET imaging for diagnosis of disease type and disease activity in patients with idiopathic interstitial pneumonia. European journal of nuclear medicine and molecular imaging 2009; 36: 1121-1130
  • 69 Vera P, Ouvrier MJ, Hapdey S et al. Does chemotherapy influence the quantification of SUV when contrast-enhanced CT is used in PET/CT in lymphoma?. European journal of nuclear medicine and molecular imaging 2007; 34: 1943-1952
  • 70 Vos FJ, Bleeker-Rovers CP, Sturm PD et al. 18 F-FDG PET/CT for detection of metastatic infection in gram-positive bacteremia. J Nucl Med 2010; 51: 1234-1240
  • 71 Vos FJ, Donnelly JP, Oyen WJ et al. 18 F-FDG PET/CT for diagnosing infectious complications in patients with severe neutropenia after intensive chemotherapy for haematological malignancy or stem cell transplantation. European journal of nuclear medicine and molecular imaging 2012; 39: 120-128
  • 72 Wilkinson MD, Fulham MJ, McCaughan BC et al. Invasive aspergillosis mimicking stage IIIA non-small-cell lung cancer on FDG positron emission tomography. Clin Nucl Med 2003; 28: 234-235
  • 73 Win T, Thomas BA, Lambrou T et al. Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients. European journal of nuclear medicine and molecular imaging 2014; 41: 337-342
  • 74 Win Z, Todd J, Al-Nahhas A. FDG-PET imaging in Pneumocystis carinii pneumonia. Clin Nucl Med 2005; 30: 690-691
  • 75 Yamane T, Daimaru O, Ito S et al. Drug-induced pneumonitis detected earlier by 18 F-FDG-PET than by high-resolution CT: a case report with non-Hodgkin’s lymphoma. Ann Nucl Med 2008; 22: 719-722