Horm Metab Res 2014; 46(07): 453-461
DOI: 10.1055/s-0034-1375651
Review
© Georg Thieme Verlag KG Stuttgart · New York

Controversial Constitutive TSHR Activity: Patients, Physiology, and In Vitro Characterization

S. Huth
1   Division of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
,
H. Jaeschke
1   Division of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
,
J. Schaarschmidt
1   Division of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
,
R. Paschke
1   Division of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
› Author Affiliations
Further Information

Publication History

received 07 January 2014

accepted 23 April 2014

Publication Date:
20 May 2014 (online)

Abstract

G protein-coupled receptors constitute a large family of transmembrane receptors, which activate cellular responses by signal transmission and regulation of second messenger metabolism after ligand binding. For several of these receptors it is known that they also signal ligand-independently. The G protein-coupled thyroid stimulating hormone receptor (TSHR) is characterized by a high level of constitutive activity in the wild type state. However, little is known yet concerning the physiological relevance of the constitutive wild type TSHR activity. Certainly, knowledge of the physiological relevance of constitutive wild type receptor activity is necessary to better understand thyroid physiology and it is a prerequisite for the development of better therapies for nonautoimmune hyperthyroidism and thyroid cancer. Based on a literature search regarding all published TSHR mutations, this review covers several mutations which are clearly associated with a hyperthyroidism-phenotype, but interestingly show a lack of constitutive activity determined by in vitro characterization. Possible reasons for the observed discrepancies between clinical phenotypes and in vitro characterization results for constitutive TSHR activity are reviewed. All current in vitro characterization methods for constitutive TSHR mutations are “preliminary attempts” and may well be revised by more comprehensive and even better approaches. However, a standardized approach for the determination of constitutive activity can help to identify TSHR mutations for which the investigation of additional signaling mechanisms would be most interesting to find explanations for the current clinical phenotype/in vitro discrepancies and thereby also define suitable methods to explore the physiological relevance of constitutive wild type TSHR activity.

 
  • References

  • 1 Costa T, Herz A. Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 1989; 86: 7321-7325
  • 2 Kenakin T. The physiological significance of constitutive receptor activity. Editorial, Constitutive Receptor Activity Series. Trends Pharmacol Sci 2005; 26: 603-605
  • 3 Seifert R, Wenzel-Seifert K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch Pharmacol 2002; 366: 381-416
  • 4 Milligan G, Bond RA. Inverse agonism and the regulation of receptor number. Trends Pharmacol Sci 1997; 18: 468-474
  • 5 Milligan G. Constitutive activity and inverse agonists of G protein-coupled receptors: a current perspective. Mol Pharmacol 2003; 64: 1271-1276
  • 6 Smit MJ, Vischer HF, Bakker RA, Jongejan A, Timmerman H, Pardo L, Leurs R. Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. Annu Rev Pharmacol Toxicol 2007; 47: 53-87
  • 7 Milligan G. Novel approaches to enhance the detection of receptor constitutive activity and inverse agonists. International Congress Series 2003; 1249: 15-25
  • 8 Leurs R, Rodriguez Pena MS, Bakker RA, Alewijnse AE, Timmerman H. Constitutive activity of G protein coupled receptors and drug action. Pharm Acta Helv 2000; 74: 327-331
  • 9 Cetani F, Tonacchera M, Vassart G. Differential effects of NaCl concentration on the constitutive activity of the thyrotropin and the luteinizing hormone/chorionic gonadotropin receptors. FEBS Lett 1996; 378: 27-31
  • 10 Dufau ML. The luteinizing hormone receptor. Annu Rev Physiol 1998; 60: 461-496
  • 11 Simoni M, Gromoll J, Nieschlag E. The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 1997; 18: 739-773
  • 12 Mear Y, Enjalbert A, Thirion S. GHS-R1a constitutive activity and its physiological relevance. Front Neurosci 2013; 7: 87
  • 13 Aloyo VJ, Berg KA, Spampinato U, Clarke WP, Harvey JA. Current status of inverse agonism at serotonin2A (5-HT2A) and 5-HT2C receptors. Pharmacol Ther 2009; 121: 160-173
  • 14 Srinivasan S, Lubrano-Berthelier C, Govaerts C, Picard F, Santiago P, Conklin BR, Vaisse C. Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans. J Clin Invest 2004; 114: 1158-1164
  • 15 Galofré JC, Chacon AM, Latif R. Targeting thyroid diseases with TSH receptor analogs. Endocrinol Nutr 2013; 60: 590-598
  • 16 Farid NR, Szkudlinski MW. Minireview. structural and functional evolution of the thyrotropin receptor. Mol Endocrinol 2004; 145: 4048-4057
  • 17 Lefkowitz RJ, Cotecchia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 1993; 14: 303-307
  • 18 Spiegel AM. Defects in G protein-coupled signal transduction in human disease. Annu Rev Physiol 1996; 58: 143-170
  • 19 Vassart G, Costagliola S. G protein-coupled receptors: mutations and endocrine diseases. Nat Rev Endocrinol 2011; 7: 362-372
  • 20 Duprez L, Parma J, Van Sande J, Allgeier A, Leclere J, Schvartz C, Delisle MJ, Decoulx M, Orgiazzi J, Dumont J, Vassart G. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat Genet 1994; 7: 396-401
  • 21 Robinson PR, Cohen GB, Zhukovsky EA, Oprian DD. Constitutively active mutants of rhodopsin. Neuron 1992; 9: 719-725
  • 22 Shenker A, Laue L, Kosugi S, Merendino Jr JJ, Minegishi T, Cutler Jr GB. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 1993; 365: 652-654
  • 23 de Ligt RA, Kourounakis AP, IJzerman AP. Inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br J Pharmacol 2000; 130: 1-12
  • 24 Emerson CH. When will thyrotropin receptor antagonists and inverse thyrotropin receptor agonists become available for clinical use?. Thyroid 2011; 21: 817-819
  • 25 Neumann S, Raaka BM, Gershengorn MC. Constitutively active thyrotropin and thyrotropin-releasing hormone receptors and their inverse agonists. Methods Enzymol 2010; 485: 147-160
  • 26 Parma J, Duprez L, Van Sande J, Paschke R, Tonacchera M, Dumont J, Vassart G. Constitutively active receptors as a disease-causing mechanism. Mol Cell Endocrinol 1994; 100: 159-162
  • 27 Lüblinghoff J, Nebel IT, Huth S, Jäschke H, Schaarschmidt J, Eszlinger M, Paschke R. The Leipzig Thyrotropin Receptor Mutation Database: Update 2012. European Thyroid Journal 2012; 1: 209–210.
  • 28 Eszlinger M, Niedziela M, Typlt E, Huth S, Jaeschke H, Schaarschmidt J, Krohn K, Paschke R. Somatic mutations in 29 hot nodules in children. 56 Symposium der Deutschen Gesellschaft für Endokrinologie 2013; OP: 10-60 (Abstract)
  • 29 Jaeschke H, Mueller S, Eszlinger M, Paschke R. Lack of in vitro constitutive activity for four previously reported TSH receptor mutations identified in patients with nonautoimmune hyperthyroidism and hot thyroid carcinomas. Clin Endocrinol (Oxf) 2010; 73: 815-820
  • 30 Niepomniszcze H, Suarez H, Pitoia F, Pignatta A, Danilowicz K, Manavela M, Elsner B, Bruno OD. Follicular carcinoma presenting as autonomous functioning thyroid nodule and containing an activating mutation of the TSH receptor (T620I) and a mutation of the Ki-RAS (G12C) genes. Thyroid 2006; 16: 497-503
  • 31 Tassi V, Di Cerbo A, Porcellini A, Papini E, Cisternino C, Crescenzi A, Scillitani A, Pizzuti A, Ratti A, Trischitta V, Avvedimento VE, Fenzi G, De FV. Screening of thyrotropin receptor mutations by fine-needle aspiration biopsy in autonomous functioning thyroid nodules in multinodular goiters. Thyroid 1999; 9: 353-357
  • 32 Mueller S, Gozu HI, Bircan R, Jaeschke H, Eszlinger M, Lueblinghoff J, Krohn K, Paschke R. Cases of borderline in vitro constitutive thyrotropin receptor activity: how to decide whether a thyrotropin receptor mutation is constitutively active or not?. Thyroid 2009; 19: 765-773
  • 33 Neumann S, Krause G, Chey S, Paschke R. A free carboxylate oxygen in the side chain of position 674 in transmembrane domain 7 is necessary for TSH receptor activation. Mol Endocrinol 2001; 15: 1294-1305
  • 34 Schaarschmidt J, Paschke S, Ozerden M, Jaschke H, Huth S, Eszlinger M, Meller J, Paschke R. Late Manifestation of Subclinical Hyperthyroidism After Goitrogenesis in an Index Patient with a N670S TSH Receptor Germline Mutation Masquerading as TSH Receptor Antibody Negative Graves’ Disease. Horm Metab Res 2012; 44: 962-965
  • 35 Tonacchera M, Van Sande J, Cetani F, Swillens S, Schvartz C, Winiszewski P, Portmann L, Dumont JE, Vassart G, Parma J. Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia. J Clin Endocrinol Metab 1996; 81: 547-554
  • 36 Russo D, Wong MG, Costante G, Chiefari E, Treseler PA, Arturi F, Filetti S, Clark OH. A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis. Thyroid 1999; 9: 13-17
  • 37 Liu Z, Sun Y, Dong Q, He M, Cheng CH, Fan F. A novel TSHR gene mutation (Ile691Phe) in a Chinese family causing autosomal dominant non-autoimmune hyperthyroidism. J Hum Genet 2008; 53: 475-478
  • 38 Liu Z, Fan F, Xiao X, Sun Y. Constitutive activation of the thyroid-stimulating hormone receptor (TSHR) by mutating Ile691 in the cytoplasmic tail segment. PLoS One 2011; 6: e16335
  • 39 Mueller S, Jaeschke H, Paschke R. Current standards, variations, and pitfalls for the determination of constitutive TSHR activity in vitro. Methods Enzymol 2010; 485: 421-436
  • 40 Vlaeminck-Guillem V, Ho SC, Rodien P, Vassart G, Costagliola S. Activation of the cAMP pathway by the TSH receptor involves switching of the ectodomain from a tethered inverse agonist to an agonist. Mol Endocrinol 2002; 16: 736-746
  • 41 Berg KA, Harvey JA, Spampinato U, Clarke WP. Physiological relevance of constitutive activity of 5-HT2A and 5-HT2C receptors. Trends Pharmacol Sci 2005; 26: 625-630
  • 42 Gether U, Ballesteros JA, Seifert R, Sanders-Bush E, Weinstein H, Kobilka BK. Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J Biol Chem 1997; 272: 2587-2590
  • 43 Herzog H, Hort YJ, Ball HJ, Hayes G, Shine J, Selbie LA. Cloned human neuropeptide Y receptor couples to two different second messenger systems. Proc Natl Acad Sci USA 1992; 89: 5794-5798
  • 44 Kenakin T. Predicting therapeutic value in the lead optimization phase of drug discovery. Nat Rev Drug Discov 2003; 2: 429-438
  • 45 Perez DM, DeYoung MB, Graham RM. Coupling of expressed alpha 1B- and alpha 1D-adrenergic receptor to multiple signaling pathways is both G protein and cell type specific. Mol Pharmacol 1993; 44: 784-795
  • 46 Van Sande J, Swillens S, Gerard C, Allgeier A, Massart C, Vassart G, Dumont JE. In Chinese hamster ovary K1 cells dog and human thyrotropin receptors activate both the cyclic AMP and the phosphatidylinositol 4,5-bisphosphate cascades in the presence of thyrotropin and the cyclic AMP cascade in its absence. Eur J Biochem 1995; 229: 338-343
  • 47 Grasberger H, Van Sande J, Hag-Dahood MA, Tenenbaum-Rakover Y, Refetoff S. A familial thyrotropin (TSH) receptor mutation provides in vivo evidence that the inositol phosphates/Ca2+ cascade mediates TSH action on thyroid hormone synthesis. J Clin Endocrinol Metab 2007; 92: 2816-2820
  • 48 Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev 2005; 85: 1159-1204
  • 49 Gozu HI, Mueller S, Bircan R, Krohn K, Ekinci G, Yavuzer D, Sargin H, Sargin M, Ones T, Gezen C, Orbay E, Cirakoglu B, Paschke R. A New Silent Germline Mutation of the TSH Receptor: Coexpression in a Hyperthyroid Family Member with a Second Activating Somatic Mutation. Thyroid 2008; 18: 499-508
  • 50 Gruters A, Schoneberg T, Biebermann H, Krude H, Krohn HP, Dralle H, Gudermann T. Severe congenital hyperthyroidism caused by a germ-line neo mutation in the extracellular portion of the thyrotropin receptor. J Clin Endocrinol Metab 1998; 83: 1431-1436
  • 51 Nogueira CR, Kopp P, Arseven OK, Santos CL, Jameson JL, Medeiros-Neto G. Thyrotropin receptor mutations in hyperfunctioning thyroid adenomas from Brazil. Thyroid 1999; 9: 1063-1068
  • 52 Sykiotis GP, Neumann S, Georgopoulos NA, Sgourou A, Papachatzopoulou A, Markou KB, Kyriazopoulou V, Paschke R, Vagenakis AG, Papavassiliou AG. Functional significance of the thyrotropin receptor germline polymorphism D727E. Biochem Biophys Res Commun 2003; 301: 1051-1056
  • 53 Sunthornthepvarakul T, Hayashi Y, Refetoff S. Polymorphism of a variant human thyrotropin receptor (hTSHR) gene. Thyroid 1994; 4: 147-149
  • 54 Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 1989; 340: 692-696
  • 55 Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev 2001; 22: 675-705
  • 56 Derwahl M. TSH receptor and Gs-alpha gene mutations in the pathogenesis of toxic thyroid adenomas – a note of caution. J Clin Endocrinol Metab 1996; 81: 2783-2785
  • 57 Trulzsch B, Krohn K, Wonerow P, Chey S, Holzapfel HP, Ackermann F, Fuhrer D, Paschke R. Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic thyroid nodules by denaturing gradient gel electrophoresis. J Mol Med 2001; 78: 684-691
  • 58 Morshed SA, Ando T, Latif R, Davies TF. Neutral antibodies to the TSH receptor are present in Graves’ disease and regulate selective signaling cascades. Mol Endocrinol 2010; 151: 5537-5549
  • 59 Calebiro D, Nikolaev VO, Gagliani MC, de Filippis T, Dees C, Tacchetti C, Persani L, Lohse MJ. Persistent cAMP-signals triggered by internalized G-protein-coupled receptors. PLoS Biol 2009; 7: e1000172
  • 60 Werthmann RC, Volpe S, Lohse MJ, Calebiro D. Persistent cAMP signaling by internalized TSH receptors occurs in thyroid but not in HEK293 cells. FASEB J 2012; 26: 2043-2048
  • 61 de Ligt RA, Kourounakis AP, IJzerman AP. Inverse agonism at G protein-coupled receptors: (patho)physiological relevance and implications for drug discovery. Br J Pharmacol 2000; 130: 1-12
  • 62 Smit MJ, Leurs R, Alewijnse AE, Blauw J, Nieuw Amerongen GP, Van DV, Roovers E, Timmerman H. Inverse agonism of histamine H2 antagonist accounts for upregulation of spontaneously active histamine H2 receptors. Proc Natl Acad Sci USA 1996; 93: 6802-6807
  • 63 MacEwan DJ, Milligan G. Up-regulation of a constitutively active form of the beta2-adrenoceptor by sustained treatment with inverse agonists but not antagonists. FEBS Lett 1996; 399: 108-112
  • 64 Fuhrer D, Lewis MD, Alkhafaji F, Starkey K, Paschke R, Wynford-Thomas D, Eggo M, Ludgate M. Biological activity of activating thyroid-stimulating hormone receptor mutants depends on the cellular context. Mol Endocrinol 2003; 144: 4018-4030
  • 65 van Staveren WC, Solis DW, Delys L, Duprez L, Andry G, Franc B, Thomas G, Libert F, Dumont JE, Detours V, Maenhaut C. Human thyroid tumor cell lines derived from different tumor types present a common dedifferentiated phenotype. Cancer Res 2007; 67: 8113-8120
  • 66 Bond RA, IJzerman AP. Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends Pharmacol Sci 2006; 27: 92-96
  • 67 Kursawe R, Paschke R. Modulation of TSHR signaling by posttranslational modifications. Trends Endocrinol Metab 2007; 18: 199-207
  • 68 Leurs R, Smit MJ, Alewijnse AE, Timmerman H. Agonist-independent regulation of constitutively active G-protein-coupled receptors. Trends Biochem Sci 1998; 23: 418-422
  • 69 Frenzel R, Voigt C, Paschke R. The human thyrotropin receptor is predominantly internalized by beta-arrestin 2. Mol Endocrinol 2006; 147: 3114-3122
  • 70 Neumann S, Geras-Raaka E, Marcus-Samuels B, Gershengorn MC. Persistent cAMP signaling by thyrotropin (TSH) receptors is not dependent on internalization. FASEB J 2010; 24: 3992-3999
  • 71 Milligan G. The stoichiometry of expression of protein components of the stimulatory adenylyl cyclase cascade and the regulation of information transfer. Cell Signal 1996; 8: 87-95