Ultraschall Med 2015; 36(04): 337-341
DOI: 10.1055/s-0034-1366677
Review
© Georg Thieme Verlag KG Stuttgart · New York

Transcranial Doppler Ultrasound in the Current Era of Carotid Artery Stenting

Transkranielle Dopplersonografie in der heutigen Ära des Karotis-Stentings
M. Spacek
1   Dpt. of Cardiology, University Hospital Motol, Prague, Czech Republic
,
V. L. Sorrell
2   Division of Cardiovascular Medicine, University of Kentucky and the Jack and Linda Gill Heart Institute, Lexington, USA
,
J. Veselka
1   Dpt. of Cardiology, University Hospital Motol, Prague, Czech Republic
› Author Affiliations
Further Information

Publication History

23 March 2014

28 April 2014

Publication Date:
25 June 2014 (online)

Abstract

Since its introduction in 1982, transcranial Doppler ultrasound (TCD) has become an important diagnostic and monitoring tool and its usefulness has been well established in many clinical applications. In carotid artery stenting (CAS), TCD has mostly been reserved for the optimization of emboli protection devices. Currently, with increasing use of proximal protection systems resembling surgical clamps, TCD has become invaluable in providing the operator an insight into a patient's cerebral hemodynamic status. Additionally, in selected patients, adverse peri- or post-procedural cerebral outcomes may even be predicted allowing the operator to adjust the therapeutic strategy. This review summarizes the current knowledge regarding the use of TCD in patients undergoing CAS and suggests potential directions of future research.

Zusammenfassung

Seit ihrer Einführung im Jahre 1982 entwickelte sich die transkranielle Dopplersonografie (TCD) sich zu einer wichtigen Methode bei der Diagnostik und Überwachung und ihr Wert konnte in vielen klinischen Anwendungen nachgewiesen werden. Beim Karotis-Stenting (CAS) wurde die TCD vor zur Optimierung der Hilfsmittel zum Embolieschutz eingesetzt. Heute ist die TCD durch die verstärkte Anwendung von proximalen Schutzsystemen, die chirurgischen Klemmen (Präparierklemmen) ähneln, unverzichtbar geworden, um den Anwender Einblick in den zerebralen hämodynamischen Status des Patienten zu geben. Darüber hinaus kann sogar bei ausgewählten Patienten eine Vorhersage für zerebrale Folgen während und nach dem Eingriff gemacht werden, wodurch der Anwender die therapeutische Strategie korrigieren kann. Die vorliegende Übersichtsarbeit fasst den aktuellen Wissensstand in Bezug auf den Einsatz der TCD bei Patienten mit CAS zusammen und empfiehlt mögliche Wege für zukünftige Forschungen.

 
  • References

  • 1 Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57: 769-774
  • 2 Moehring MA, Spencer MP. Power M-mode transcranial Doppler ultrasoundand simultaneous single gate spectrogram. Ultrasound Med Biol 2002; 28: 49-57
  • 3 Benichou H, Bergeron P. Carotid angioplasty and stenting: Will periprocedural transcranial Doppler monitoring be important?. J Endovasc Surg 1996; 3: 217-223
  • 4 Gomez CR, Brass LM, Tegeler CH et al. The transcranial Doppler standardization project. J Neuroimaging 1993; 3: 190-192
  • 5 North American Symptomatic Carotid Artery Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991; 325: 445-453
  • 6 European Carotid Surgery Trialists´ Collaborative Group. MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or mild (0–29%) carotid stenosis. Lancet 1991; 337: 1235-1243
  • 7 Endarterectomy for asymptomatic carotid artery stenosis. JAMA 1995; 273: 1421-1428
  • 8 Halliday AW, Thomas D, Mansfield A. The Asymptomatic Carotid Surgery Trial (ACST). Rationale and design. Steering Committee. Eur J Vasc Surg 1994; 8: 703-710
  • 9 Brott TG, Hobson 2nd RW, Howard G et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med 2010; 363: 11-23
  • 10 Meier B, Frank B, Wahl A et al. Secondary stroke prevention: patent foramen ovale, aortic plaque, and carotid stenosis. Eur Heart J 2012; 33: 705-713
  • 11 Jordan Jr WD, Voellinger DC, Doblar DD et al. Microemboli detected by transcranial Doppler monitoring in patients during carotid angioplasty versus carotid endarterectomy. Cardiovasc Surg 1999; 7: 33-38
  • 12 Ackerstaff RG, Suttorp MJ, van den Berg JC et al. Prediction of early cerebral outcome by transcranial Doppler monitoring in carotid bifurcation angioplasty and stenting. J Vasc Surg 2005; 41: 618-624
  • 13 Theron JG, Payelle GG, Coskun O et al. Carotid artery stenosis: treatment with protected balloon angioplasty and stent placement. Radiology 1996; 201: 627-637
  • 14 Vos JA, van den Berg JC, Ernst SM et al. Carotid angioplasty and stent placement: comparison of transcranial Doppler US data and clinical outcome with and without filtering cerebral protection devices in 509 patients. Radiology 2005; 234: 493-499
  • 15 Montorsi P, Caputi L, Galli S et al. Microembolization during carotid artery stenting in patients with high-risk, lipid-rich plaque. A randomized trial of proximal versus distal cerebral protection. J Am Coll Cardiol 2011; 58: 1656-1663
  • 16 Schmidt A, Diedrich KW, Scheinert S et al. Effect of two different neuroprotection systems on microembolization during carotid artery stenting. J Am Coll Cardiol 2004; 44: 1966-1969
  • 17 Spacek M, Veselka J. Microembolization following balloon deflation during proximally protected carotid artery stenting – a potential focus of procedure improvement?. Catheter Cardiovasc Interv Apr 24. 2013; DOI: 10.1002/ccd.24969. [Epub ahead of print]
  • 18 Clair DG, Hopkins LN, Mehta M et al. EMPiRE Clinical Study Investigators. Neuroprotection during carotid artery stenting using the GORE flow reversal system: 30-day outcomes in the EMPIRE Clinical Study. Catheter Cardiovasc Interv 2011; 77: 420-429
  • 19 Ansel GM, Hopkins LN, Jaff MR et al. Safety and effectiveness of the INVATEC MO.MA proximal cerebral protection device during carotid artery stenting: results from the ARMOUR pivotal trial. Catheter Cardiovasc Interv 2010; 76: 1-8
  • 20 Bijuklic K, Wandler A, Hazizi F et al. The PROFI Study (Prevention of Cerebral Embolization by Proximal Balloon Occlusion Compared to Filter Protection During Carotid Artery Stenting): a prospective randomized trial. J Am Coll Cardiol 2012; 59: 1383-1389
  • 21 Chaturvedi S, Wechsler LR. Carotid revascularization strategies: the need for more data. Stroke 2012; 43: 929-930
  • 22 Rothwell PM, Goldstein LB. Carotid endarterectomy for asymptomatic carotid stenosis: asymptomatic carotid surgery trial. Stroke 2004; 35: 2425-2427
  • 23 White CJ, Ramee SR, Collins TJ et al. Carotid artery stenting: Patient, lesion, and procedural characteristics that increase procedural complications. Catheter Cardiovasc Interv 2013; 82: 715-726
  • 24 Spence DJ, Tamayo A, Lownie SP et al. Absence of microemboli on transcranial Doppler identifies low-risk patients with asymptomatic carotid stenosis. Stroke 2005; 36: 2373-2378
  • 25 Markus HS, King A, Shipley M et al. Asymptomatic embolisation for prediction of stroke in the Asymptomatic Carotid Emboli Study (ACES): a prospective observational study. Lancet Neurol 2010; 9: 663-671
  • 26 Markus H, Cullinane M. Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 2001; 124: 457-467
  • 27 Yonas H, Smith HA, Durmah SR et al. Increased stroke risk predicted by compromised cerebral blood flow reactivity. J Neurosurg 1993; 79: 483-489
  • 28 D’Angelo V, Capatano C, Bozzini V et al. Cerebrovascular reactivity before and after carotid endarterectomy. Surg Neurol 1999; 51: 321-326
  • 29 Weiller C, Ringelstein EB, Reiche W et al. Clinical and hemodynamic aspects of low-flow infarcts. Stroke 1991; 22: 1117-1123
  • 30 Caplan LR, Hennerici M. Impaired clearance of emboli (washout) is an important link between hypoperfusion, embolism, and ischemic stroke. Arch Neurol 1998; 55: 1475-1482
  • 31 Orlandi G, Fanucchi S, Gallerini S et al. Impaired clearance of microemboli and cerebrovaslar symptoms during carotid stenting procedures. Arch Neurol 2005; 62: 1208-1211
  • 32 Markus HS, Harrison MJG. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 1992; 23: 668-673
  • 33 Ringelstein EB, Van Eyck S, Mertens I. Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison of CO2 to acetazolamide. J Cereb Blood Flow Metab 1992; 12: 162-168
  • 34 Silvestrini M, Vernieri F, Pasqualetti P et al. Impaired cerebral vasoreactivity and risk of stroke in patients with asymptomatic carotid artery stenosis. JAMA 2000; 283: 2122-2127
  • 35 Gupta A, Chazen JL, Hartman M et al. Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion. Stroke 2012; 43: 2884-2891
  • 36 Sfyroeras G, Karkos CD, Liasidis C et al. The impact of carotid stenting on the hemodynamic parameters and cerebrovascular reactivity of the ipsilateral middle cerebral artery. J Vasc Surg 2006; 44: 1016-1022
  • 37 Cremonesi A, Rigattieri S, Liso A et al. Proximal protection in carotid artery stenting: rationale and recent findings. EuroIntervention 2007; 3: 269-274
  • 38 Powers WJ. Cerebral hemodynamics in ischemic cerebrovascular disease. Ann Neurol 1991; 29: 231-240
  • 39 Liebeskind DS. Collateral circulation. Stroke 2003; 34: 2279-2284
  • 40 Meyer JS, Denny-Brown D. The cerebral collateral circulation. I.Factors influencing collateral blood flow. Neurology 1957; 7: 447-458
  • 41 Hofmeijer J, Klijn CJ, Kappelle LJ et al. Collateral circulation via the ophthalmic artery or leptomeningeal vessels is associated with impaired cerebral vasoreactivity in patients with symptomatic carotid artery occlusion. Cerebrovasc Dis 2002; 14: 22-26
  • 42 Vernieri F, Pasqualetti P, Matteis M et al. Effect of collateral blood flow and cerebral vasomotor reactivity on the outcome of carotid artery occlusion. Stroke 2001; 32: 1552-1558
  • 43 Anzola GP, Limoni P, Cavrini G. Predictors of carotid clamping intolerance during endarterectomy that would be wise to apply to stenting procedures. Cerebrovasc Dis 2008; 26: 494-501
  • 44 Visser GH, Wieneke GH, van Huffelen AC et al. The use of preoperative transcranial Doppler variables to predict which patients do not need a shunt during carotid endarterectomy. Eur J Vasc Endovasc Surg 2000; 19: 226-232
  • 45 Belardi P, Lucertini G. Cerebral vasoreactivity does not predict cerebral ischemia during carotid endarterectomy. J Cardiovasc Surg (Torino) 2003; 44: 731
  • 46 Doblar DD, Plyushcheva NV, Jordan W et al. Predicting the effect of carotid artery occlusion during carotid endarterectomy: comparing transcranial doppler measurements and cerebral angiography. Stroke 1998; 29: 2038-2042
  • 47 Garami Z, Lumsden AB. Intra-operative TCD Monitoring. In: Alexandrov AV, ed. Cerebrovascular ultrasound in stroke prevention and treatment, 2nd Edition. Wiley-Blackwell Publishing; 2011: 214-227
  • 48 Abou-Chebl A, Yadav JS, Reginelli JP et al. Intracranial hemorrhage and hyperperfusion syndrome following carotid artery stenting: risk factors, prevention, and treatment. J Am Coll Cardiol 2004; 43: 1596-1601
  • 49 Ouriel K, Shortell CK, Illig KA et al. Intracerebral hemorrhage after carotid endarterectomy: incidence, contribution to neurologic morbidity, and predictive factors. J Vasc Surg 1999; 29: 82-87
  • 50 Jansen C, Sprengers AM, Moll FL et al. Prediction of intracerebral haemorrhage after carotid endarterectomy by clinical criteria and intraoperative transcranial Doppler monitoring: results of 233 operations. Eur J Vasc Surg 1994; 8: 220-225