Semin Respir Crit Care Med 2014; 35(01): 003-016
DOI: 10.1055/s-0033-1363447
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Chest Radiography: New Technological Developments and Their Applications

S. Schalekamp
1   Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
,
B. van Ginneken
1   Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
,
N. Karssemeijer
1   Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
,
C.M. Schaefer-Prokop
1   Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
2   Department of Radiology, Meander Medical Center Amersfoort, The Netherlands
› Author Affiliations
Further Information

Publication History

Publication Date:
30 January 2014 (online)

Abstract

Digital chest radiography is still the most common radiological examination. With the upcoming three-dimensional (3D) acquisition techniques the value of radiography seems to diminish. But because radiography is inexpensive, readily available, and requires very little dose, it is still being used for the first-line detection of many cardiothoracic diseases. In the last decades major technical developments of this 2D technique are being achieved. First, hardware developments of digital radiography have improved the contrast to noise, dose efficacy, throughput, and workflow. Dual energy acquisition techniques reduce anatomical noise by splitting a chest radiograph into a soft tissue image and a bone image. Second, advanced processing methods are developed to enable and improve detection of many kinds of disease. Digital bone subtraction by a software algorithm mimics the soft tissue image normally acquired with dedicated hardware. Temporal subtraction aims to rule out anatomical structures clotting the image, by subtracting a current radiograph with a previous radiograph. Finally, computer-aided detection systems help radiologists for the detection of various kinds of disease such as pulmonary nodules or tuberculosis.

 
  • References

  • 1 Cowen AR, Davies AG, Kengyelics SM. Advances in computed radiography systems and their physical imaging characteristics. Clin Radiol 2007; 62 (12) 1132-1141
  • 2 Veldkamp WJH, Kroft LJM, Geleijns J. Dose and perceived image quality in chest radiography. Eur J Radiol 2009; 72 (2) 209-217
  • 3 Berger-Kulemann V, Pötter-Lang S, Gruber M , et al. Needle image plates compared to conventional CR in chest radiography: is dose reduction possible?. Eur J Radiol 2012; 81 (12) 4156-4160
  • 4 Körner M, Treitl M, Schaetzing R, Pfeifer KJ, Reiser M, Wirth S. Depiction of low-contrast detail in digital radiography: comparison of powder- and needle-structured storage phosphor systems. Invest Radiol 2006; 41 (7) 593-599
  • 5 Gruber M, Uffmann M, Weber M, Prokop M, Balassy C, Schaefer-Prokop C. Direct detector radiography versus dual reading computed radiography: feasibility of dose reduction in chest radiography. Eur Radiol 2006; 16 (7) 1544-1550
  • 6 Schaefer-Prokop C, Neitzel U, Venema HW, Uffmann M, Prokop M. Digital chest radiography: an update on modern technology, dose containment and control of image quality. Eur Radiol 2008; 18 (9) 1818-1830
  • 7 Neitzel U. Status and prospects of digital detector technology for CR and DR. Radiat Prot Dosimetry 2005; 114 (1-3) 32-38
  • 8 Schaefer-Prokop CM, De Boo DW, Uffmann M, Prokop M. DR and CR: Recent advances in technology. Eur J Radiol 2009; 72 (2) 194-201
  • 9 Veldkamp WJH, Kroft LJM, Boot MV, Mertens BJA, Geleijns J. Contrast-detail evaluation and dose assessment of eight digital chest radiography systems in clinical practice. Eur Radiol 2006; 16 (2) 333-341
  • 10 Bertolini M, Nitrosi A, Rivetti S , et al. A comparison of digital radiography systems in terms of effective detective quantum efficiency. Med Phys 2012; 39 (5) 2617-2627
  • 11 Willis CE. Optimizing digital radiography of children. Eur J Radiol 2009; 72 (2) 266-273
  • 12 Prokop M, Neitzel U, Schaefer-Prokop C. Principles of image processing in digital chest radiography. J Thorac Imaging 2003; 18 (3) 148-164
  • 13 Stahl M, Aach T, Dippel S. Digital radiography enhancement by nonlinear multiscale processing. Med Phys 2000; 27 (1) 56-65
  • 14 Vuylsteke P, Schoeters EP. Multiscale image contrast amplification (MUSICA). Proc. SPIE 1994; 2167: 551-560 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=955751 . Accessed July 05, 2013.
  • 15 Monnier-Cholley L, Arrivé L, Porcel A , et al. Characteristics of missed lung cancer on chest radiographs: a French experience. Eur Radiol 2001; 11 (4) 597-605
  • 16 Shah PK, Austin JHM, White CS , et al. Missed non-small cell lung cancer: radiographic findings of potentially resectable lesions evident only in retrospect. Radiology 2003; 226 (1) 235-241
  • 17 Li F, Engelmann R, Pesce LL, Doi K, Metz CE, Macmahon H. Small lung cancers: improved detection by use of bone suppression imaging—comparison with dual-energy subtraction chest radiography. Radiology 2011; 261 (3) 937-949
  • 18 Oda S, Awai K, Murao K , et al. Computer-aided volumetry of pulmonary nodules exhibiting ground-glass opacity at MDCT. AJR Am J Roentgenol 2010; 194 (2) 398-406
  • 19 Li F, Engelmann R, Doi K, MacMahon H. Improved detection of small lung cancers with dual-energy subtraction chest radiography. AJR Am J Roentgenol 2008; 190 (4) 886-891
  • 20 Ide K, Mogami H, Murakami T, Yasuhara Y, Miyagawa M, Mochizuki T. Detection of lung cancer using single-exposure dual-energy subtraction chest radiography. Radiat Med 2007; 25 (5) 195-201
  • 21 Ricke J, Fischbach F, Freund T , et al. Clinical results of CsI-detector-based dual-exposure dual energy in chest radiography. Eur Radiol 2003; 13 (12) 2577-2582
  • 22 Kido S, Ikezoe J, Naito H , et al. Clinical evaluation of pulmonary nodules with single-exposure dual-energy subtraction chest radiography with an iterative noise-reduction algorithm. Radiology 1995; 194 (2) 407-412
  • 23 Kelcz F, Zink FE, Peppler WW, Kruger DG, Ergun DL, Mistretta CA. Conventional chest radiography vs dual-energy computed radiography in the detection and characterization of pulmonary nodules. AJR Am J Roentgenol 1994; 162 (2) 271-278
  • 24 Szucs-Farkas Z, Patak MA, Yuksel-Hatz S, Ruder T, Vock P. Single-exposure dual-energy subtraction chest radiography: detection of pulmonary nodules and masses in clinical practice. Eur Radiol 2008; 18 (1) 24-31
  • 25 Rühl R, Wozniak MM, Werk M , et al. CsI-detector-based dual-exposure dual energy in chest radiography for lung nodule detection: results of an international multicenter trial. Eur Radiol 2008; 18 (9) 1831-1839
  • 26 Ho JT, Kruger RA. Comparison of dual-energy and conventional chest radiography for nodule detection. Invest Radiol 1989; 24 (11) 861-868
  • 27 Fischbach F, Freund T, Röttgen R, Engert U, Felix R, Ricke J. Dual-energy chest radiography with a flat-panel digital detector: revealing calcified chest abnormalities. AJR Am J Roentgenol 2003; 181 (6) 1519-1524
  • 28 Gilkeson RC, Novak RD, Sachs P. Digital radiography with dual-energy subtraction: improved evaluation of cardiac calcification. AJR Am J Roentgenol 2004; 183 (5) 1233-1238
  • 29 Mafi JN, Fei B, Roble S , et al. Assessment of coronary artery calcium using dual-energy subtraction digital radiography. J Digit Imaging 2012; 25 (1) 129-136
  • 30 Szucs-Farkas Z, Lautenschlager K, Flach PM , et al. Bone images from dual-energy subtraction chest radiography in the detection of rib fractures. Eur J Radiol 2011; 79 (2) e28-e32
  • 31 Suzuki K, Abe H, MacMahon H, Doi K. Image-processing technique for suppressing ribs in chest radiographs by means of massive training artificial neural network (MTANN). IEEE Trans Med Imaging 2006; 25 (4) 406-416
  • 32 Loog M, van Ginneken B. Bony structure suppression in chest radiographs. In: Computer Vision Approaches to Medical Image Analysis. Vol 4241. Berlin, Heidelberg: Springer; 2006: 166-177
  • 33 Freedman MT, Lo SCB, Seibel JC, Bromley CM. Lung nodules: improved detection with software that suppresses the rib and clavicle on chest radiographs. Radiology 2011; 260 (1) 265-273
  • 34 Oda S, Awai K, Suzuki K , et al. Performance of radiologists in detection of small pulmonary nodules on chest radiographs: effect of rib suppression with a massive-training artificial neural network. AJR Am J Roentgenol 2009; 193 (5) W397-W402s
  • 35 Li F, Engelmann R, Pesce L, Armato III SG, Macmahon H. Improved detection of focal pneumonia by chest radiography with bone suppression imaging. Eur Radiol 2012; 22 (12) 2729-2735
  • 36 Becker HC, Nettleton Jr WJ, Meyers PH, Sweeney JW, Nice Jr CM. Digital computer determination of a medical diagnostic index directly from chest X-ray images. IEEE Trans Biomed Eng 1964; 11: 67-72
  • 37 Meyers PH, Nice Jr CM, Becker HC, Nettleton Jr WJ, Sweeney JW, Meckstroth GR. Automated computer analysis of radiographic images. Radiology 1964; 83: 1029-1034
  • 38 Toriwaki J, Suenaga Y, Negoro T, Fukumura T. Pattern recognition of chest X-ray images. Comput Graph Image Process. 1973; 2 (3/4) 252-271
  • 39 Ballard DH. Hierarchic Recognition of Tumors in Chest Radiographs. New York: Birkhauser-Verlag; 1976
  • 40 Matsumoto T, Yoshimura H, Doi K , et al. Image feature analysis of false-positive diagnoses produced by automated detection of lung nodules. Invest Radiol 1992; 27 (8) 587-597
  • 41 Matsumoto T, Yoshimura H, Giger ML , et al. Potential usefulness of computerized nodule detection in screening programs for lung cancer. Invest Radiol 1992; 27 (6) 471-475
  • 42 Li F, Engelmann R, Metz CE, Doi K, MacMahon H. Lung cancers missed on chest radiographs: results obtained with a commercial computer-aided detection program. Radiology 2008; 246 (1) 273-280
  • 43 White CS, Flukinger T, Jeudy J, Chen JJ. Use of a computer-aided detection system to detect missed lung cancer at chest radiography. Radiology 2009; 252 (1) 273-281
  • 44 Kligerman S, Cai L, White CS. The effect of computer-aided detection on radiologist performance in the detection of lung cancers previously missed on a chest radiograph. J Thorac Imaging 2013; 28 (4) 244-252
  • 45 Shiraishi J, Katsuragawa S, Ikezoe J , et al. Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists' detection of pulmonary nodules. AJR Am J Roentgenol 2000; 174 (1) 71-74
  • 46 Carreira MJ, Cabello D, Penedo MG, Mosquera A. Computer-aided diagnoses: automatic detection of lung nodules. Med Phys 1998; 25 (10) 1998-2006
  • 47 Wei J, Hagihara Y, Shimizu A, Kobatake H. Optimal image feature set for detecting lung nodules on chest X-ray images. Presented at: Computer Assisted Radiology and Surgery (CARS 2002); 2002:706–711
  • 48 Coppini G, Diciotti S, Falchini M, Villari N, Valli G. Neural networks for computer-aided diagnosis: detection of lung nodules in chest radiograms. IEEE Trans Inf Technol Biomed 2003; 7 (4) 344-357
  • 49 Schilham AMR, van Ginneken B. Computer-aided diagnosis as a second reader for nodule detection in chest radiographs versus single and double reading. Presented at: European Congress of Radiology; 2005; 205
  • 50 Campadelli P, Casiraghi E, Artioli D. A fully automated method for lung nodule detection from postero-anterior chest radiographs. IEEE Trans Med Imaging 2006; 25 (12) 1588-1603
  • 51 Hardie RC, Rogers SK, Wilson T, Rogers A. Performance analysis of a new computer aided detection system for identifying lung nodules on chest radiographs. Med Image Anal 2008; 12 (3) 240-258
  • 52 Snoeren PR, Litjens GJS, van Ginneken B, Karssemeijer N. Training a computer aided detection system with simulated lung nodules in chest radiographs. Presented at: The Third International Workshop on Pulmonary Image Analysis; 2010; 139–149
  • 53 Chen S, Suzuki K, MacMahon H. Development and evaluation of a computer-aided diagnostic scheme for lung nodule detection in chest radiographs by means of two-stage nodule enhancement with support vector classification. Med Phys 2011; 38 (4) 1844-1858
  • 54 Xu Y, Ma D, He W. Assessing the use of digital radiography and a real-time interactive pulmonary nodule analysis system for large population lung cancer screening. Eur J Radiol 2012; 81 (4) e451-e456
  • 55 van Beek EJR, Mullan B, Thompson B. Evaluation of a real-time interactive pulmonary nodule analysis system on chest digital radiographic images: a prospective study. Acad Radiol 2008; 15 (5) 571-575
  • 56 Kasai S, Li F, Shiraishi J, Doi K. Usefulness of computer-aided diagnosis schemes for vertebral fractures and lung nodules on chest radiographs. AJR Am J Roentgenol 2008; 191 (1) 260-265
  • 57 Shiraishi J, Abe H, Li F, Engelmann R, MacMahon H, Doi K. Computer-aided diagnosis for the detection and classification of lung cancers on chest radiographs ROC analysis of radiologists' performance. Acad Radiol 2006; 13 (8) 995-1003
  • 58 Sakai S, Soeda H, Takahashi N , et al. Computer-aided nodule detection on digital chest radiography: validation test on consecutive T1 cases of resectable lung cancer. J Digit Imaging 2006; 19 (4) 376-382
  • 59 Kakeda S, Moriya J, Sato H , et al. Improved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis system. AJR Am J Roentgenol 2004; 182 (2) 505-510
  • 60 De Boo DW, Uffmann M, Weber M , et al. Computer-aided detection of small pulmonary nodules in chest radiographs: an observer study. Acad Radiol 2011; 18 (12) 1507-1514
  • 61 de Hoop B, De Boo DW, Gietema HA , et al. Computer-aided detection of lung cancer on chest radiographs: effect on observer performance. Radiology 2010; 257 (2) 532-540
  • 62 Lee KH, Goo JM, Park CM, Lee HJ, Jin KN. Computer-aided detection of malignant lung nodules on chest radiographs: effect on observers' performance. KJR 2012; 13 (5) 564-571
  • 63 Meziane M, Obuchowski NA, Lababede O, Lieber ML, Philips M, Mazzone P. A comparison of follow-up recommendations by chest radiologists, general radiologists, and pulmonologists using computer-aided detection to assess radiographs for actionable pulmonary nodules. AJR Am J Roentgenol 2011; 196 (5) W542-W549
  • 64 Balkman JD, Mehandru S, DuPont E, Novak RD, Gilkeson RC. Dual energy subtraction digital radiography improves performance of a next generation computer-aided detection program. J Thorac Imaging 2010; 25 (1) 41-47
  • 65 Szucs-Farkas Z, Patak MA, Yuksel-Hatz S, Ruder T, Vock P. Improved detection of pulmonary nodules on energy-subtracted chest radiographs with a commercial computer-aided diagnosis software: comparison with human observers. Eur Radiol 2010; 20 (6) 1289-1296
  • 66 Novak RD, Novak NJ, Gilkeson R, Mansoori B, Aandal GE. A comparison of computer-aided detection (CAD) effectiveness in pulmonary nodule identification using different methods of bone suppression in chest radiographs. J Digit Imaging 2013; 26 (4) 651-656
  • 67 Szucs-Farkas Z, Schick A, Cullmann JL , et al. Comparison of dual-energy subtraction and electronic bone suppression combined with computer-aided detection on chest radiographs: effect on human observers' performance in nodule detection. AJR Am J Roentgenol 2013; 200 (5) 1006-1013
  • 68 Schalekamp S, van Ginneken B, Koedam E , et al. Computer aided detection helps radiologists to detect pulmonary nodules in chest radiographs, when having bone suppressed images available. Presented at: Annual Meeting of the Radiological Society of North America; 2012
  • 69 Arzhaeva Y, Hogeweg L, de Jong PA, Viergever MA, van Ginneken B. Global and local multi-valued dissimilarity-based classification: application to computer-aided detection of tuberculosis. Med Image Comput Comput Assist Interv 2009; 12 (2) 724-731
  • 70 van Ginneken B, Katsuragawa S, ter Haar Romeny BM, Doi K, Viergever MA. Automatic detection of abnormalities in chest radiographs using local texture analysis. IEEE Trans Med Imaging 2002; 21 (2) 139-149
  • 71 Maduskar P, Hogeweg L, Ayles H, van Ginneken B. Performance evaluation of automatic chest radiograph reading for detection of tuberculosis (TB): a comparative study with clinical officers and certified readers on TB suspects in sub-Saharan Africa. Presented at: European Congress of Radiology; 2013
  • 72 Asada N, Doi K, MacMahon H , et al. Potential usefulness of an artificial neural network for differential diagnosis of interstitial lung diseases: pilot study. Radiology 1990; 177 (3) 857-860
  • 73 Arzhaeva Y, Prokop M, Tax DMJ, De Jong PA, Schaefer-Prokop CM, van Ginneken B. Computer-aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography. Med Phys 2007; 34 (12) 4798-4809
  • 74 Abe H, Ashizawa K, Li F , et al. Artificial neural networks (ANNs) for differential diagnosis of interstitial lung disease: results of a simulation test with actual clinical cases. Acad Radiol 2004; 11 (1) 29-37
  • 75 Hogeweg L, Mol C, de Jong PA, van Ginneken B. Rib suppression in chest radiographs to improve classification of textural abnormalities. Proc. SPIE 2010; 7624: 76240Y1-76240Y6 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=747829 . Accessed July 05, 2013.
  • 76 Maduskar P, Hogeweg L, Philipsen R, Schalekamp S, van Ginneken B. Improved texture analysis for automatic detection of Tuberculosis (TB) on Chest Radiographs with Bone Suppression images. Proc. SPIE 2013; 8670 :p. 86700H-86700H-6. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1669548 . Accessed July 05, 2013.
  • 77 Miniati M, Coppini G, Monti S, Bottai M, Paterni M, Ferdeghini EM. Computer-aided recognition of emphysema on digital chest radiography. Eur J Radiol 2011; 80 (2) e169-e175
  • 78 Coppini G, Miniati M, Monti S, Paterni M, Favilla R, Ferdeghini EM. A computer-aided diagnosis approach for emphysema recognition in chest radiography. Med Eng Phys 2013; 35 (1) 63-73
  • 79 Sanada S, Doi K, MacMahon H. Image feature analysis and computer-aided diagnosis in digital radiography: automated detection of pneumothorax in chest images. Med Phys 1992; 19 (5) 1153-1160
  • 80 Keller BM, Reeves AP, Cham MD, Henschke CI, Yankelevitz DF. Semi-automated location identification of catheters in digital chest radiographs. Proc. SPIE 2007; 6514 :p. 65141O-65141O-9. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1299820 . Accessed July 11, 2013.
  • 81 Ramakrishna B, Brown M, Goldin J, Cagnon C, Enzmann D. Catheter detection and classification on chest radiographs: an automated prototype computer-aided detection (CAD) system for radiologists. Proc. SPIE 2011; 7963 :p. 796333 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=725597 . Accessed July 11, 2013.
  • 82 Ramakrishna B, Brown M, Goldin J, Cagnon C, Enzmann D. An improved automatic computer aided tube detection and labeling system on chest radiographs. Proc. SPIE 2012; 8315 :p. 83150R-83150R-7 http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1285261 . Accessed July 11, 2013.
  • 83 Kinsey J, Vannelli B, Fontana R, Miller W, Johnson S, Gilbert B. Application of digital image change detection to diagnosis and follow-up of cancer involving the lungs. Proc. SPIE 1976; 0070: 99-112. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1225514 . Accessed July 11, 2013.
  • 84 Kano A, Doi K, MacMahon H, Hassell DD, Giger ML. Digital image subtraction of temporally sequential chest images for detection of interval change. Med Phys 1994; 21 (3) 453-461
  • 85 Katsuragawa S, Tagashira H, Li Q, MacMahon H, Doi K. Comparison of the quality of temporal subtraction images obtained with manual and automated methods of digital chest radiography. J Digit Imaging 1999; 12 (4) 166-172
  • 86 Armato III SG, Doshi DJ, Engelmann R, Caligiuri P, MacMahon H. Temporal subtraction of dual-energy chest radiographs. Med Phys 2006; 33 (6) 1911-1919
  • 87 Difazio MC, MacMahon H, Xu XW , et al. Digital chest radiography: effect of temporal subtraction images on detection accuracy. Radiology 1997; 202 (2) 447-452
  • 88 Uozumi T, Nakamura K, Watanabe H, Nakata H, Katsuragawa S, Doi K. ROC analysis of detection of metastatic pulmonary nodules on digital chest radiographs with temporal subtraction. Acad Radiol 2001; 8 (9) 871-878
  • 89 Tsubamoto M, Johkoh T, Kozuka T , et al. Temporal subtraction for the detection of hazy pulmonary opacities on chest radiography. AJR Am J Roentgenol 2002; 179 (2) 467-471
  • 90 Okazaki H, Nakamura K, Watanabe H , et al. Improved detection of lung cancer arising in diffuse lung diseases on chest radiographs using temporal subtraction. Acad Radiol 2004; 11 (5) 498-505
  • 91 Kakeda S, Nakamura K, Kamada K , et al. Improved detection of lung nodules by using a temporal subtraction technique. Radiology 2002; 224 (1) 145-151
  • 92 Johkoh T, Kozuka T, Tomiyama N , et al. Temporal subtraction for detection of solitary pulmonary nodules on chest radiographs: evaluation of a commercially available computer-aided diagnosis system. Radiology 2002; 223 (3) 806-811
  • 93 Sasaki Y, Abe K, Tabei M, Katsuragawa S, Kurosaki A, Matsuoka S. Clinical usefulness of temporal subtraction method in screening digital chest radiography with a mobile computed radiography system. Radiological Phys Technol 2011; 4 (1) 84-90
  • 94 Kakeda S, Kamada K, Hatakeyama Y , et al. Effect of temporal subtraction technique on interpretation time and diagnostic accuracy of chest radiography. AJR Am J Roentgenol 2006; 187 (5) 1253-1259
  • 95 Technologies R . Deltaview Reader Study; 2011 http://www.accessdata.fda.gov/cdrh_docs/pdf11/K111776.pdf . Accessed June 11, 2013.
  • 96 Aoki T, Oda N, Yamashita Y, Yamamoto K, Korogi Y. Usefulness of computerized method for lung nodule detection on digital chest radiographs using similar subtraction images from different patients. Eur J Radiol 2012; 81 (5) 1062-1067