Dialyse aktuell 2013; 17(9): 464-471
DOI: 10.1055/s-0033-1363351
Nephrologie
© Georg Thieme Verlag Stuttgart · New York

Der systemische Lupus erythematodes – Pathogenese

Systemic lupus erythematosus – Pathogenesis
Hui Zhi Low
1   Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (Leitung: Prof. Dr. Reinhold E. Schmidt)
,
Torsten Witte
1   Klinik für Immunologie und Rheumatologie, Medizinische Hochschule Hannover (Leitung: Prof. Dr. Reinhold E. Schmidt)
› Author Affiliations
Further Information

Publication History

Publication Date:
25 November 2013 (online)

In den letzten Jahren wurde das Verständnis der Pathogenese des systemischen Lupus erythematodes (SLE) wesentlich verbessert. Durch genomweite Assoziationsstudien wurden circa 80 Risikogene identifiziert, die wichtige Kontrollpunkte des Immunsystems beeinflussen und einen Toleranzverlust begünstigen. Durch vermehrte Apoptose und verringerte Clearance von Bestandteilen apoptotischer Zellen fallen bei SLE-Patienten vermehrt Kernproteine (wie Sm, SSA, SSB) an, die zur Autoantikörperbildung führen. Immunkomplexe, die aus DNA bzw. Ribonukleoproteinen mit RNA und Autoantikörpern bestehen, binden an Toll-like Rezeptoren auf dendritischen Zellen sowie Monozyten und induzieren die Bildung von Interferon alpha, dem treibenden Zytokin des SLE. Die Immunkomplexe aus DNA und Autoantikörpern induzieren eine Glomerulonephritis, da sie an die Basalmembran in den Nieren binden und dort zu einer Aktivierung des Komplementsystems und von Fc-Rezeptor exprimierenden Zellen führen. Das bessere Verständnis der Pathophysiologie ergibt für die Zukunft neue therapeutische Ansatzpunkte, die die Prognose des SLE weiter verbessern werden.

Recently, progress has been made in the understanding of the pathogenesis of systemic lupus erythematosus (SLE). In genome-wide association studies, more than 80 susceptibility genes have been identified which affect important control points of the immune system and contribute to a loss of tolerance. An enhanced rate of apoptosis and the reduction of the clearance of components of apoptotic cells result in the presence of nuclear proteins (such as Sm, SSA, SSB) in the circulation of SLE patients which induce the formation of autoantibodies. Immune complexes consisting of DNA or ribonucleoproteins with RNA and autoantibodies bind to Toll-like receptors on dendritic cells and monocytes and induce production of interferon alpha, the dominant cytokine in SLE. Immune complexes consisting of DNA and autoantibodies may induce glomerulonephritis, since they bind to basement membranes in the kidneys and activate both the complement cascade as well as cells expressing Fc receptors. A better knowledge of the pathophysiology will lead to the identification of further therapeutic targets and to an improvement of SLE prognosis.

 
  • Literatur

  • 1 Moser KL, Kelly JA, Lessard CJ, Harley JB. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun 2009; 10: 373-379
  • 2 Buyon JP, Petri MA, Kim MY et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. Ann Intern Med 2005; 142: 953-962
  • 3 James JA, Kaufman KM, Farris AD et al. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest 1997; 100: 3019-3026
  • 4 Arbuckle MR, McClain MT, Rubertone MV et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003; 349: 1526-1533
  • 5 Chiou SH, Lan JL, Lin SL et al. Pet dogs owned by lupus patients are at a higher risk of developing lupus. Lupus 2004; 13: 442-449
  • 6 Baechler EC, Batliwalla FM, Karypis G et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc Natl Acad Sci U S A 2003; 100: 2610-2615
  • 7 Muñoz LE, Janko C, Grossmayer GE et al. Remnants of secondarily necrotic cells fuel inflammation in systemic lupus erythematosus. Arthritis Rheum 2009; 60: 1733-1742
  • 8 Jacobi AM, Odendahl M, Reiter K et al. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 2003; 48: 1332-1342
  • 9 Nakano S, Morimoto S, Suzuki J et al. Role of pathogenic auto-antibody production by Toll-like receptor 9 of B cells in active systemic lupus erythematosus. Rheumatology (Oxford) 2008; 47: 145-149
  • 10 Means TK, Latz E, Hayashi F et al. Human lupus autoantibody-DNA complexes activate DCs through cooperation of CD32 and TLR9. J Clin Invest 2005; 115: 407-417
  • 11 Schmiedeke TM, Stöckl FW, Weber R et al. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis. J Exp Med 1989; 169: 1879-1894
  • 12 Termaat RM, Assmann KJ, Dijkman HB et al. Anti-DNA antibodies can bind to the glomerulus via two distinct mechanisms. Kidney Int 1992; 42: 1363-1371
  • 13 Vlahakos DV, Foster MH, Adams S et al. Anti-DNA antibodies form immune deposits at distinct glomerular and vascular sites. Kidney Int 1992; 41: 1690-1700
  • 14 Werwitzke S, Trick D, Kamino K et al. Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the (NZB x NZW)F1 mouse. Arthritis Rheum 2005; 52: 3629-3638