Semin Respir Crit Care Med 2013; 34(03): 336-351
DOI: 10.1055/s-0033-1348467
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Bronchiolitis Obliterans Syndrome: The Achilles' Heel of Lung Transplantation

S. Samuel Weigt
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
,
Ariss DerHovanessian
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
,
W. Dean Wallace
2   Department of Pathology and Laboratory Medicine, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
,
Joseph P. Lynch III
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
,
John A. Belperio
1   Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
› Author Affiliations
Further Information

Publication History

Publication Date:
02 July 2013 (online)

Abstract

Lung transplantation is a therapeutic option for patients with end-stage pulmonary disorders. Unfortunately, chronic lung allograft dysfunction (CLAD), most commonly manifest as bronchiolitis obliterans syndrome (BOS), continues to be highly prevalent and is the major limitation to long-term survival. The pathogenesis of BOS is complex and involves alloimmune and nonalloimmune pathways. Clinically, BOS manifests as airway obstruction and dyspnea that are classically progressive and ultimately fatal; however, the course is highly variable, and distinguishable phenotypes may exist. There are few controlled studies assessing treatment efficacy, but only a minority of patients respond to current treatment modalities. Ultimately, preventive strategies may prove more effective at prolonging survival after lung transplantation, but their remains considerable debate and little data regarding the best strategies to prevent BOS. A better understanding of the risk factors and their relationship to the pathological mechanisms of chronic lung allograft rejection should lead to better pharmacological targets to prevent or treat this syndrome.

 
  • References

  • 1 Christie JD, Edwards LB, Kucheryavaya AY , et al; International Society of Heart and Lung Transplantation. The Registry of the International Society for Heart and Lung Transplantation: 29th adult lung and heart-lung transplant report-2012. J Heart Lung Transplant 2012; 31 (10) 1073-1086
  • 2 Knoop C, Estenne M. Acute and chronic rejection after lung transplantation. Semin Respir Crit Care Med 2006; 27 (5) 521-533
  • 3 Vermeulen KM, Groen H, van der Bij W, Erasmus ME, Koëter GH, TenVergert EM. The effect of bronchiolitis obliterans syndrome on health related quality of life. Clin Transplant 2004; 18 (4) 377-383
  • 4 van den Berg JW, van Enckevort PJ, TenVergert EM, Postma DS, van der Bij W, Koëter GH. Bronchiolitis obliterans syndrome and additional costs of lung transplantation. Chest 2000; 118 (6) 1648-1652
  • 5 Estenne M, Maurer JR, Boehler A , et al. Bronchiolitis obliterans syndrome 2001: an update of the diagnostic criteria. J Heart Lung Transplant 2002; 21 (3) 297-310
  • 6 Hachem RR, Chakinala MM, Yusen RD , et al. The predictive value of bronchiolitis obliterans syndrome stage 0-p. Am J Respir Crit Care Med 2004; 169 (4) 468-472
  • 7 Lama VN, Murray S, Mumford JA , et al. Prognostic value of bronchiolitis obliterans syndrome stage 0-p in single-lung transplant recipients. Am J Respir Crit Care Med 2005; 172 (3) 379-383
  • 8 Stewart S, Fishbein MC, Snell GI , et al. Revision of the 1996 working formulation for the standardization of nomenclature in the diagnosis of lung rejection. J Heart Lung Transplant 2007; 26 (12) 1229-1242
  • 9 Yousem SA, Berry GJ, Cagle PT , et al. Revision of the 1990 working formulation for the classification of pulmonary allograft rejection: Lung Rejection Study Group. J Heart Lung Transplant 1996; 15 (1 Pt 1) 1-15
  • 10 Saggar R, Ross DJ, Saggar R , et al. Pulmonary hypertension associated with lung transplantation obliterative bronchiolitis and vascular remodeling of the allograft. Am J Transplant 2008; 8 (9) 1921-1930
  • 11 Finlen Copeland CA, Snyder LD, Zaas DW, Turbyfill WJ, Davis WA, Palmer SM. Survival after bronchiolitis obliterans syndrome among bilateral lung transplant recipients. Am J Respir Crit Care Med 2010; 182 (6) 784-789
  • 12 Burton CM, Carlsen J, Mortensen J, Andersen CB, Milman N, Iversen M. Long-term survival after lung transplantation depends on development and severity of bronchiolitis obliterans syndrome. J Heart Lung Transplant 2007; 26 (7) 681-686
  • 13 Estenne M, Hertz MI. Bronchiolitis obliterans after human lung transplantation. Am J Respir Crit Care Med 2002; 166 (4) 440-444
  • 14 Heng D, Sharples LD, McNeil K, Stewart S, Wreghitt T, Wallwork J. Bronchiolitis obliterans syndrome: incidence, natural history, prognosis, and risk factors. J Heart Lung Transplant 1998; 17 (12) 1255-1263
  • 15 Jackson CH, Sharples LD, McNeil K, Stewart S, Wallwork J. Acute and chronic onset of bronchiolitis obliterans syndrome (BOS): are they different entities?. J Heart Lung Transplant 2002; 21 (6) 658-666
  • 16 Lama VN, Murray S, Lonigro RJ , et al. Course of FEV(1) after onset of bronchiolitis obliterans syndrome in lung transplant recipients. Am J Respir Crit Care Med 2007; 175 (11) 1192-1198
  • 17 Verleden G, Dupont L. Obliterative bronchiolitis. In: Lynch III JP, Ross DJ, , eds. Lung and Heart–Lung Transplantation. Lung Biology in Health and Disease. New York: Taylor & Francis; 2006. 217. 723-751
  • 18 Borthwick LA, McIlroy EI, Gorowiec MR , et al. Inflammation and epithelial to mesenchymal transition in lung transplant recipients: role in dysregulated epithelial wound repair. Am J Transplant 2010; 10 (3) 498-509
  • 19 Borthwick LA, Parker SM, Brougham KA , et al. Epithelial to mesenchymal transition (EMT) and airway remodelling after human lung transplantation. Thorax 2009; 64 (9) 770-777
  • 20 Hodge S, Holmes M, Banerjee B , et al. Posttransplant bronchiolitis obliterans syndrome is associated with bronchial epithelial to mesenchymal transition. Am J Transplant 2009; 9 (4) 727-733
  • 21 Iacono A, Dauber J, Keenan R , et al. Interleukin 6 and interferon-gamma gene expression in lung transplant recipients with refractory acute cellular rejection: implications for monitoring and inhibition by treatment with aerosolized cyclosporine. Transplantation 1997; 64 (2) 263-269
  • 22 Lu KC, Jaramillo A, Lecha RL , et al. Interleukin-6 and interferon-gamma gene polymorphisms in the development of bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2002; 74 (9) 1297-1302
  • 23 Meloni F, Vitulo P, Cascina A , et al. Bronchoalveolar lavage cytokine profile in a cohort of lung transplant recipients: a predictive role of interleukin-12 with respect to onset of bronchiolitis obliterans syndrome. J Heart Lung Transplant 2004; 23 (9) 1053-1060
  • 24 Moudgil A, Bagga A, Toyoda M, Nicolaidou E, Jordan SC, Ross D. Expression of gamma-IFN mRNA in bronchoalveolar lavage fluid correlates with early acute allograft rejection in lung transplant recipients. Clin Transplant 1999; 13 (2) 201-207
  • 25 Neuringer IP, Walsh SP, Mannon RB, Gabriel S, Aris RM. Enhanced T cell cytokine gene expression in mouse airway obliterative bronchiolitis. Transplantation 2000; 69 (3) 399-405
  • 26 Räisänen-Sokolowski A, Glysing-Jensen T, Russell ME. Leukocyte-suppressing influences of interleukin (IL)-10 in cardiac allografts: insights from IL-10 knockout mice. Am J Pathol 1998; 153 (5) 1491-1500
  • 27 Keane MP, Gomperts BN, Weigt S , et al. IL-13 is pivotal in the fibro-obliterative process of bronchiolitis obliterans syndrome. J Immunol 2007; 178 (1) 511-519
  • 28 Lama VN, Harada H, Badri LN , et al. Obligatory role for interleukin-13 in obstructive lesion development in airway allografts. Am J Pathol 2006; 169 (1) 47-60
  • 29 Zhai Y, Ghobrial RM, Busuttil RW, Kupiec-Weglinski JW. Th1 and Th2 cytokines in organ transplantation: paradigm lost?. Crit Rev Immunol 1999; 19 (2) 155-172
  • 30 Heidt S, Segundo DS, Chadha R, Wood KJ. The impact of Th17 cells on transplant rejection and the induction of tolerance. Curr Opin Organ Transplant 2010; 15 (4) 456-461
  • 31 Chanut-Delalande H, Fichard A, Bernocco S, Garrone R, Hulmes DJ, Ruggiero F. Control of heterotypic fibril formation by collagen V is determined by chain stoichiometry. J Biol Chem 2001; 276 (26) 24352-24359
  • 32 Iwata T, Chiyo M, Yoshida S , et al. Lung transplant ischemia reperfusion injury: metalloprotease inhibition down-regulates exposure of type V collagen, growth-related oncogene-induced neutrophil chemotaxis, and tumor necrosis factor-alpha expression. Transplantation 2008; 85 (3) 417-426
  • 33 Hachem RR, Tiriveedhi V, Patterson GA, Aloush A, Trulock EP, Mohanakumar T. Antibodies to K-α 1 tubulin and collagen V are associated with chronic rejection after lung transplantation. Am J Transplant 2012; 12 (8) 2164-2171
  • 34 Haque MA, Mizobuchi T, Yasufuku K , et al. Evidence for immune responses to a self-antigen in lung transplantation: role of type V collagen-specific T cells in the pathogenesis of lung allograft rejection. J Immunol 2002; 169 (3) 1542-1549
  • 35 Bharat A, Fields RC, Trulock EP, Patterson GA, Mohanakumar T. Induction of IL-10 suppressors in lung transplant patients by CD4+25+ regulatory T cells through CTLA-4 signaling. J Immunol 2006; 177 (8) 5631-5638
  • 36 Fukami N, Ramachandran S, Saini D , et al. Antibodies to MHC class I induce autoimmunity: role in the pathogenesis of chronic rejection. J Immunol 2009; 182 (1) 309-318
  • 37 Burlingham WJ, Love RB, Jankowska-Gan E , et al. IL-17-dependent cellular immunity to collagen type V predisposes to obliterative bronchiolitis in human lung transplants. J Clin Invest 2007; 117 (11) 3498-3506
  • 38 Vanaudenaerde BM, De Vleeschauwer SI, Vos R , et al. The role of the IL23/IL17 axis in bronchiolitis obliterans syndrome after lung transplantation. Am J Transplant 2008; 8 (9) 1911-1920
  • 39 Nakagiri T, Inoue M, Morii E , et al. Local IL-17 production and a decrease in peripheral blood regulatory T cells in an animal model of bronchiolitis obliterans. Transplantation 2010; 89 (11) 1312-1319
  • 40 Fan L, Benson HL, Vittal R , et al. Neutralizing IL-17 prevents obliterative bronchiolitis in murine orthotopic lung transplantation. Am J Transplant 2011; 11 (5) 911-922
  • 41 Kollins D, Stoelcker B, Hoffmann U , et al. FOXP3+ regulatory T-cells in renal allografts: correlation with long-term graft function and acute rejection. Clin Nephrol 2011; 75 (2) 91-100
  • 42 Batsford S, Dickenmann M, Dürmüller U, Hopfer H, Gudat F, Mihatsch M. Is monitoring of FOXP3 Treg cells in renal transplants during acute cellular rejection episodes useful?. Clin Nephrol 2011; 75 (2) 101-106
  • 43 Iwase H, Kobayashi T, Kodera Y , et al. Clinical significance of regulatory T-cell-related gene expression in peripheral blood after renal transplantation. Transplantation 2011; 91 (2) 191-198
  • 44 Bhorade SM, Chen H, Molinero L , et al. Decreased percentage of CD4+FoxP3+ cells in bronchoalveolar lavage from lung transplant recipients correlates with development of bronchiolitis obliterans syndrome. Transplantation 2010; 90 (5) 540-546
  • 45 Gregson AL, Hoji A, Palchevskiy V , et al. Protection against bronchiolitis obliterans syndrome is associated with allograft CCR7+ CD45RA- T regulatory cells. PLoS ONE 2010; 5 (6) e11354
  • 46 Bröcker V, Länger F, Fellous TG , et al. Fibroblasts of recipient origin contribute to bronchiolitis obliterans in human lung transplants. Am J Respir Crit Care Med 2006; 173 (11) 1276-1282
  • 47 Kleeberger W, Versmold A, Rothämel T , et al. Increased chimerism of bronchial and alveolar epithelium in human lung allografts undergoing chronic injury. Am J Pathol 2003; 162 (5) 1487-1494
  • 48 Hertz MI, Henke CA, Nakhleh RE , et al. Obliterative bronchiolitis after lung transplantation: a fibroproliferative disorder associated with platelet-derived growth factor. Proc Natl Acad Sci U S A 1992; 89 (21) 10385-10389
  • 49 Kallio EA, Koskinen PK, Aavik E, Buchdunger E, Lemström KB. Role of platelet-derived growth factor in obliterative bronchiolitis (chronic rejection) in the rat. Am J Respir Crit Care Med 1999; 160 (4) 1324-1332
  • 50 Tikkanen JM, Hollmén M, Nykänen AI, Wood J, Koskinen PK, Lemström KB. Role of platelet-derived growth factor and vascular endothelial growth factor in obliterative airway disease. Am J Respir Crit Care Med 2006; 174 (10) 1145-1152
  • 51 Aharinejad S, Taghavi S, Klepetko W, Abraham D. Prediction of lung-transplant rejection by hepatocyte growth factor. Lancet 2004; 363 (9420) 1503-1508
  • 52 Charpin JM, Stern M, Grenet D, Israël-Biet D. Insulinlike growth factor-1 in lung transplants with obliterative bronchiolitis. Am J Respir Crit Care Med 2000; 161 (6) 1991-1998
  • 53 El-Gamel A, Sim E, Hasleton P , et al. Transforming growth factor beta (TGF-beta) and obliterative bronchiolitis following pulmonary transplantation. J Heart Lung Transplant 1999; 18 (9) 828-837
  • 54 Belperio JA, Burdick MD, Keane MP , et al. The role of the CC chemokine, RANTES, in acute lung allograft rejection. J Immunol 2000; 165 (1) 461-472
  • 55 Belperio JA, Keane MP, Burdick MD , et al. Role of CXCL9/CXCR3 chemokine biology during pathogenesis of acute lung allograft rejection. J Immunol 2003; 171 (9) 4844-4852
  • 56 Belperio JA, Keane MP, Burdick MD , et al. Role of CXCR2/CXCR2 ligands in vascular remodeling during bronchiolitis obliterans syndrome. J Clin Invest 2005; 115 (5) 1150-1162
  • 57 Belperio JA, Keane MP, Burdick MD , et al. Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J Clin Invest 2001; 108 (4) 547-556
  • 58 Belperio JA, Keane MP, Burdick MD , et al. Critical role for CXCR3 chemokine biology in the pathogenesis of bronchiolitis obliterans syndrome. J Immunol 2002; 169 (2) 1037-1049
  • 59 DiGiovine B, Lynch III JP, Martinez FJ , et al. Bronchoalveolar lavage neutrophilia is associated with obliterative bronchiolitis after lung transplantation: role of IL-8. J Immunol 1996; 157 (9) 4194-4202
  • 60 Reynaud-Gaubert M, Marin V, Thirion X , et al. Upregulation of chemokines in bronchoalveolar lavage fluid as a predictive marker of post-transplant airway obliteration. J Heart Lung Transplant 2002; 21 (7) 721-730
  • 61 Vos R, Blondeau K, Vanaudenaerde BM , et al. Airway colonization and gastric aspiration after lung transplantation: do birds of a feather flock together?. J Heart Lung Transplant 2008; 27 (8) 843-849
  • 62 Neurohr C, Huppmann P, Samweber B , et al; Munich Lung Transplant Group. Prognostic value of bronchoalveolar lavage neutrophilia in stable lung transplant recipients. J Heart Lung Transplant 2009; 28 (5) 468-474
  • 63 Jiang X, Khan MA, Tian W , et al. Adenovirus-mediated HIF-1α gene transfer promotes repair of mouse airway allograft microvasculature and attenuates chronic rejection. J Clin Invest 2011; 121 (6) 2336-2349
  • 64 Le Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation 2002; 73 (9) 1373-1381
  • 65 Chalermskulrat W, Neuringer IP, Schmitz JL , et al. Human leukocyte antigen mismatches predispose to the severity of bronchiolitis obliterans syndrome after lung transplantation. Chest 2003; 123 (6) 1825-1831
  • 66 Sundaresan S, Mohanakumar T, Smith MA , et al. HLA-A locus mismatches and development of antibodies to HLA after lung transplantation correlate with the development of bronchiolitis obliterans syndrome. Transplantation 1998; 65 (5) 648-653
  • 67 SivaSai KS, Smith MA, Poindexter NJ , et al. Indirect recognition of donor HLA class I peptides in lung transplant recipients with bronchiolitis obliterans syndrome. Transplantation 1999; 67 (8) 1094-1098
  • 68 Stanford RE, Ahmed S, Hodson M, Banner NR, Rose ML. A role for indirect allorecognition in lung transplant recipients with obliterative bronchiolitis. Am J Transplant 2003; 3 (6) 736-742
  • 69 Duncan SR, Leonard C, Theodore J , et al. Oligoclonal CD4(+) T cell expansions in lung transplant recipients with obliterative bronchiolitis. Am J Respir Crit Care Med 2002; 165 (10) 1439-1444
  • 70 Bando K, Paradis IL, Similo S , et al. Obliterative bronchiolitis after lung and heart-lung transplantation. An analysis of risk factors and management. J Thorac Cardiovasc Surg 1995; 110 (1) 4-13 , discussion 13–14
  • 71 Husain AN, Siddiqui MT, Holmes EW , et al. Analysis of risk factors for the development of bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 1999; 159 (3) 829-833
  • 72 Scott AI, Sharples LD, Stewart S. Bronchiolitis obliterans syndrome: risk factors and therapeutic strategies. Drugs 2005; 65 (6) 761-771
  • 73 Verleden GM, Dupont LJ, Van Raemdonck DE. Is it bronchiolitis obliterans syndrome or is it chronic rejection: a reappraisal?. Eur Respir J 2005; 25 (2) 221-224
  • 74 Hopkins PM, Aboyoun CL, Chhajed PN , et al. Association of minimal rejection in lung transplant recipients with obliterative bronchiolitis. Am J Respir Crit Care Med 2004; 170 (9) 1022-1026
  • 75 Burton CM, Iversen M, Scheike T, Carlsen J, Andersen CB. Minimal acute cellular rejection remains prevalent up to 2 years after lung transplantation: a retrospective analysis of 2697 transbronchial biopsies. Transplantation 2008; 85 (4) 547-553
  • 76 Kroshus TJ, Kshettry VR, Savik K, John R, Hertz MI, Bolman III RM. Risk factors for the development of bronchiolitis obliterans syndrome after lung transplantation. J Thorac Cardiovasc Surg 1997; 114 (2) 195-202
  • 77 Hachem RR, Khalifah AP, Chakinala MM , et al. The significance of a single episode of minimal acute rejection after lung transplantation. Transplantation 2005; 80 (10) 1406-1413
  • 78 Khalifah AP, Hachem RR, Chakinala MM , et al. Minimal acute rejection after lung transplantation: a risk for bronchiolitis obliterans syndrome. Am J Transplant 2005; 5 (8) 2022-2030
  • 79 Tazelaar HD, Yousem SA. The pathology of combined heart-lung transplantation: an autopsy study. Hum Pathol 1988; 19 (12) 1403-1416
  • 80 Girgis RE, Tu I, Berry GJ , et al. Risk factors for the development of obliterative bronchiolitis after lung transplantation. J Heart Lung Transplant 1996; 15 (12) 1200-1208
  • 81 Sharples LD, McNeil K, Stewart S, Wallwork J. Risk factors for bronchiolitis obliterans: a systematic review of recent publications. J Heart Lung Transplant 2002; 21 (2) 271-281
  • 82 Glanville AR, Aboyoun CL, Havryk A, Plit M, Rainer S, Malouf MA. Severity of lymphocytic bronchiolitis predicts long-term outcome after lung transplantation. Am J Respir Crit Care Med 2008; 177 (9) 1033-1040
  • 83 Takemoto SK, Zeevi A, Feng S , et al. National conference to assess antibody-mediated rejection in solid organ transplantation. Am J Transplant 2004; 4 (7) 1033-1041
  • 84 Bittner HB, Dunitz J, Hertz M, Bolman III MR, Park SJ. Hyperacute rejection in single lung transplantation—case report of successful management by means of plasmapheresis and antithymocyte globulin treatment. Transplantation 2001; 71 (5) 649-651
  • 85 Choi JK, Kearns J, Palevsky HI , et al. Hyperacute rejection of a pulmonary allograft. Immediate clinical and pathologic findings. Am J Respir Crit Care Med 1999; 160 (3) 1015-1018
  • 86 de Jesus Peixoto Camargo J, Marcantonio Camargo S, Marcelo Schio S, Noguchi Machuca T, Adélia Perin F. Hyperacute rejection after single lung transplantation: a case report. Transplant Proc 2008; 40 (3) 867-869
  • 87 Frost AE, Jammal CT, Cagle PT. Hyperacute rejection following lung transplantation. Chest 1996; 110 (2) 559-562
  • 88 Scornik JC, Zander DS, Baz MA, Donnelly WH, Staples ED. Susceptibility of lung transplants to preformed donor-specific HLA antibodies as detected by flow cytometry. Transplantation 1999; 68 (10) 1542-1546
  • 89 Hadjiliadis D, Chaparro C, Reinsmoen NL , et al. Pre-transplant panel reactive antibody in lung transplant recipients is associated with significantly worse post-transplant survival in a multicenter study. J Heart Lung Transplant 2005; 24 (7, Suppl): S249-S254
  • 90 Shah AS, Nwakanma L, Simpkins C, Williams J, Chang DC, Conte JV. Pretransplant panel reactive antibodies in human lung transplantation: an analysis of over 10,000 patients. Ann Thorac Surg 2008; 85 (6) 1919-1924
  • 91 Yousem SA, Martin T, Paradis IL, Keenan R, Griffith BP. Can immunohistological analysis of transbronchial biopsy specimens predict responder status in early acute rejection of lung allografts?. Hum Pathol 1994; 25 (5) 525-529
  • 92 Girnita AL, McCurry KR, Iacono AT , et al. HLA-specific antibodies are associated with high-grade and persistent-recurrent lung allograft acute rejection. J Heart Lung Transplant 2004; 23 (10) 1135-1141
  • 93 Girnita AL, Duquesnoy R, Yousem SA , et al. HLA-specific antibodies are risk factors for lymphocytic bronchiolitis and chronic lung allograft dysfunction. Am J Transplant 2005; 5 (1) 131-138
  • 94 Palmer SM, Davis RD, Hadjiliadis D , et al. Development of an antibody specific to major histocompatibility antigens detectable by flow cytometry after lung transplant is associated with bronchiolitis obliterans syndrome. Transplantation 2002; 74 (6) 799-804
  • 95 Smith MA, Sundaresan S, Mohanakumar T , et al. Effect of development of antibodies to HLA and cytomegalovirus mismatch on lung transplantation survival and development of bronchiolitis obliterans syndrome. J Thorac Cardiovasc Surg 1998; 116 (5) 812-820
  • 96 Maruyama T, Jaramillo A, Narayanan K, Higuchi T, Mohanakumar T. Induction of obliterative airway disease by anti-HLA class I antibodies. Am J Transplant 2005; 5 (9) 2126-2134
  • 97 Westall GP, Snell GI, McLean C, Kotsimbos T, Williams T, Magro C. C3d and C4d deposition early after lung transplantation. J Heart Lung Transplant 2008; 27 (7) 722-728
  • 98 Wallace WD, Reed EF, Ross D, Lassman CR, Fishbein MC. C4d staining of pulmonary allograft biopsies: an immunoperoxidase study. J Heart Lung Transplant 2005; 24 (10) 1565-1570
  • 99 Yousem SA, Zeevi A. The histopathology of lung allograft dysfunction associated with the development of donor-specific HLA alloantibodies. Am J Surg Pathol 2012; 36 (7) 987-992
  • 100 DeNicola MM, Weigt SS, Belperio JA, Reed EF, Ross DJ, Wallace WD. Pathologic findings in lung allografts with anti-HLA antibodies. J Heart Lung Transplant 2013; 32 (3) 326-332
  • 101 Kalache S, Dinavahi R, Pinney S, Mehrotra A, Cunningham MW, Heeger PS. Anticardiac myosin immunity and chronic allograft vasculopathy in heart transplant recipients. J Immunol 2011; 187 (2) 1023-1030
  • 102 Nath DS, Ilias Basha H, Tiriveedhi V , et al. Characterization of immune responses to cardiac self-antigens myosin and vimentin in human cardiac allograft recipients with antibody-mediated rejection and cardiac allograft vasculopathy. J Heart Lung Transplant 2010; 29 (11) 1277-1285
  • 103 Lemy A, Andrien M, Lionet A , et al. Posttransplant major histocompatibility complex class I chain-related gene A antibodies and long-term graft outcomes in a multicenter cohort of 779 kidney transplant recipients. Transplantation 2012; 93 (12) 1258-1264
  • 104 Reinsmoen NL, Lai CH, Heidecke H , et al. Anti-angiotensin type 1 receptor antibodies associated with antibody mediated rejection in donor HLA antibody negative patients. Transplantation 2010; 90 (12) 1473-1477
  • 105 Utsumi K, Sawada T, Adachi E , et al. Collagen type IV in acute rejection of kidney. Transplant Proc 2000; 32 (7) 1785
  • 106 Goers TA, Ramachandran S, Aloush A, Trulock E, Patterson GA, Mohanakumar T. De novo production of K-alpha1 tubulin-specific antibodies: role in chronic lung allograft rejection. J Immunol 2008; 180 (7) 4487-4494
  • 107 Saini D, Weber J, Ramachandran S , et al. Alloimmunity-induced autoimmunity as a potential mechanism in the pathogenesis of chronic rejection of human lung allografts. J Heart Lung Transplant 2011; 30 (6) 624-631
  • 108 Adachi E, Hopkinson I, Hayashi T. Basement-membrane stromal relationships: interactions between collagen fibrils and the lamina densa. Int Rev Cytol 1997; 173: 73-156
  • 109 Yasufuku K, Heidler KM, Woods KA , et al. Prevention of bronchiolitis obliterans in rat lung allografts by type V collagen-induced oral tolerance. Transplantation 2002; 73 (4) 500-505
  • 110 Tiriveedhi V, Angaswamy N, Brand D , et al. A shift in the collagen V antigenic epitope leads to T helper phenotype switch and immune response to self-antigen leading to chronic lung allograft rejection. Clin Exp Immunol 2012; 167 (1) 158-168
  • 111 Gull K, Hussey PJ, Sasse R, Schneider A, Seebeck T, Sherwin T. Tubulin isotypes: generation of diversity in cells and microtubular organelles. J Cell Sci Suppl 1986; 5: 243-255
  • 112 Takano T, Hasegawa Y, Miyauchi A , et al. Overexpression of kalpha1 tubulin mRNA in thyroid anaplastic carcinoma. Cancer Lett 2001; 168 (1) 51-55
  • 113 Villasante A, Wang D, Dobner P, Dolph P, Lewis SA, Cowan NJ. Six mouse alpha-tubulin mRNAs encode five distinct isotypes: testis-specific expression of two sister genes. Mol Cell Biol 1986; 6 (7) 2409-2419
  • 114 Murphy DB. Functions of tubulin isoforms. Curr Opin Cell Biol 1991; 3 (1) 43-51
  • 115 Wang N, Yan K, Rasenick MM. Tubulin binds specifically to the signal-transducing proteins, Gs alpha and Gi alpha 1. J Biol Chem 1990; 265 (3) 1239-1242
  • 116 Bharat A, Saini D, Steward N , et al. Antibodies to self-antigens predispose to primary lung allograft dysfunction and chronic rejection. Ann Thorac Surg 2010; 90 (4) 1094-1101
  • 117 Andrade CF, Waddell TK, Keshavjee S, Liu M. Innate immunity and organ transplantation: the potential role of toll-like receptors. Am J Transplant 2005; 5 (5) 969-975
  • 118 Chen L, Wang T, Zhou P , et al. TLR engagement prevents transplantation tolerance. Am J Transplant 2006; 6 (10) 2282-2291
  • 119 Porrett PM, Yuan X, LaRosa DF , et al. Mechanisms underlying blockade of allograft acceptance by TLR ligands. J Immunol 2008; 181 (3) 1692-1699
  • 120 Garantziotis S, Palmer SM, Snyder LD , et al. Alloimmune lung injury induced by local innate immune activation through inhaled lipopolysaccharide. Transplantation 2007; 84 (8) 1012-1019
  • 121 Palmer SM, Burch LH, Trindade AJ , et al. Innate immunity influences long-term outcomes after human lung transplant. Am J Respir Crit Care Med 2005; 171 (7) 780-785
  • 122 Kastelijn EA, van Moorsel CH, Rijkers GT , et al. Polymorphisms in innate immunity genes associated with development of bronchiolitis obliterans after lung transplantation. J Heart Lung Transplant 2010; 29 (6) 665-671
  • 123 Palmer SM, Klimecki W, Yu L , et al. Genetic regulation of rejection and survival following human lung transplantation by the innate immune receptor CD14. Am J Transplant 2007; 7 (3) 693-699
  • 124 Carroll KE, Dean MM, Heatley SL , et al. High levels of mannose-binding lectin are associated with poor outcomes after lung transplantation. Transplantation 2011; 91 (9) 1044-1049
  • 125 Hodge S, Dean M, Hodge G, Holmes M, Reynolds PN. Decreased efferocytosis and mannose binding lectin in the airway in bronchiolitis obliterans syndrome. J Heart Lung Transplant 2011; 30 (5) 589-595
  • 126 Budd SJ, Aris RM, Medaiyese AA, Tilley SL, Neuringer IP. Increased plasma mannose binding lectin levels are associated with bronchiolitis obliterans after lung transplantation. Respir Res 2012; 13: 56
  • 127 Christie JD, Carby M, Bag R, Corris P, Hertz M, Weill D. ISHLT Working Group on Primary Lung Graft Dysfunction. Report of the ISHLT Working Group on Primary Lung Graft Dysfunction part II: definition. A consensus statement of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant 2005; 24 (10) 1454-1459
  • 128 Andrade CF, Kaneda H, Der S , et al. Toll-like receptor and cytokine gene expression in the early phase of human lung transplantation. J Heart Lung Transplant 2006; 25 (11) 1317-1323
  • 129 Sugimoto S, Lin X, Okazaki M , et al. Monocyte differentiation is controlled by MyD88 after mouse orthotopic lung transplantation. Transplant Proc 2009; 41 (1) 388-390
  • 130 Kaczorowski DJ, Tsung A, Billiar TR. Innate immune mechanisms in ischemia/reperfusion. Front Biosci (Elite Ed) 2009; 1: 91-98
  • 131 Moreno I, Vicente R, Ramos F, Vicente JL, Barberá M. Determination of interleukin-6 in lung transplantation: association with primary graft dysfunction. Transplant Proc 2007; 39 (7) 2425-2426
  • 132 Serrick C, Adoumie R, Giaid A, Shennib H. The early release of interleukin-2, tumor necrosis factor-alpha and interferon-gamma after ischemia reperfusion injury in the lung allograft. Transplantation 1994; 58 (11) 1158-1162
  • 133 Karakurum M, Shreeniwas R, Chen J , et al. Hypoxic induction of interleukin-8 gene expression in human endothelial cells. J Clin Invest 1994; 93 (4) 1564-1570
  • 134 Belperio JA, Keane MP, Burdick MD , et al. CXCR2/CXCR2 ligand biology during lung transplant ischemia-reperfusion injury. J Immunol 2005; 175 (10) 6931-6939
  • 135 Shah RJ, Diamond JM, Lederer DJ , et al. Plasma monocyte chemotactic protein-1 levels at 24 hours are a biomarker of primary graft dysfunction after lung transplantation. Transl Res 2012; 160 (6) 435-442
  • 136 Waddell TK, Gorczynski RM, DeCampos KN, Patterson GA, Slutsky AS. Major histocompatibility complex expression and lung ischemia-reperfusion in rats. Ann Thorac Surg 1996; 62 (3) 866-872
  • 137 Bharat A, Narayanan K, Street T , et al. Early posttransplant inflammation promotes the development of alloimmunity and chronic human lung allograft rejection. Transplantation 2007; 83 (2) 150-158
  • 138 Prekker ME, Nath DS, Walker AR , et al. Validation of the proposed International Society for Heart and Lung Transplantation grading system for primary graft dysfunction after lung transplantation. J Heart Lung Transplant 2006; 25 (4) 371-378
  • 139 Christie JD, Kotloff RM, Ahya VN , et al. The effect of primary graft dysfunction on survival after lung transplantation. Am J Respir Crit Care Med 2005; 171 (11) 1312-1316
  • 140 Daud SA, Yusen RD, Meyers BF , et al. Impact of immediate primary lung allograft dysfunction on bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2007; 175 (5) 507-513
  • 141 Whitson BA, Prekker ME, Herrington CS , et al. Primary graft dysfunction and long-term pulmonary function after lung transplantation. J Heart Lung Transplant 2007; 26 (10) 1004-1011
  • 142 Diamond JM, Lederer DJ, Kawut SM , et al; Lung Transplant Outcomes Group. Elevated plasma long pentraxin-3 levels and primary graft dysfunction after lung transplantation for idiopathic pulmonary fibrosis. Am J Transplant 2011; 11 (11) 2517-2522
  • 143 Diamond JM, Meyer NJ, Feng R , et al; Lung Transplant Outcomes Group. Variation in PTX3 is associated with primary graft dysfunction after lung transplantation. Am J Respir Crit Care Med 2012; 186 (6) 546-552
  • 144 Young LR, Hadjiliadis D, Davis RD, Palmer SM. Lung transplantation exacerbates gastroesophageal reflux disease. Chest 2003; 124 (5) 1689-1693
  • 145 Basseri B, Conklin JL, Pimentel M , et al. Esophageal motor dysfunction and gastroesophageal reflux are prevalent in lung transplant candidates. Ann Thorac Surg 2010; 90 (5) 1630-1636
  • 146 Li B, Hartwig MG, Appel JZ , et al. Chronic aspiration of gastric fluid induces the development of obliterative bronchiolitis in rat lung transplants. Am J Transplant 2008; 8 (8) 1614-1621
  • 147 D'Ovidio F, Mura M, Tsang M , et al. Bile acid aspiration and the development of bronchiolitis obliterans after lung transplantation. J Thorac Cardiovasc Surg 2005; 129 (5) 1144-1152
  • 148 Blondeau K, Mertens V, Vanaudenaerde BA , et al. Gastro-oesophageal reflux and gastric aspiration in lung transplant patients with or without chronic rejection. Eur Respir J 2008; 31 (4) 707-713
  • 149 Mertens V, Blondeau K, Van Oudenhove L , et al. Bile acids aspiration reduces survival in lung transplant recipients with BOS despite azithromycin. Am J Transplant 2011; 11 (2) 329-335
  • 150 Shah N, Force SD, Mitchell PO , et al. Gastroesophageal reflux disease is associated with an increased rate of acute rejection in lung transplant allografts. Transplant Proc 2010; 42 (7) 2702-2706
  • 151 Murthy SC, Nowicki ER, Mason DP , et al. Pretransplant gastroesophageal reflux compromises early outcomes after lung transplantation. J Thorac Cardiovasc Surg 2011; 142 (1) 47-52 , e3
  • 152 Hartwig MG, Anderson DJ, Onaitis MW , et al. Fundoplication after lung transplantation prevents the allograft dysfunction associated with reflux. Ann Thorac Surg 2011; 92 (2) 462-468 , 468–469
  • 153 D'Ovidio F, Mura M, Ridsdale R , et al. The effect of reflux and bile acid aspiration on the lung allograft and its surfactant and innate immunity molecules SP-A and SP-D. Am J Transplant 2006; 6 (8) 1930-1938
  • 154 Tang T, Chang JC, Xie A, Davis RD, Parker W, Lin SS. Aspiration of gastric fluid in pulmonary allografts: Effect of pH. J Surg Res 2013; 181 (1) e31-e38
  • 155 Hoppo T, Jarido V, Pennathur A , et al. Antireflux surgery preserves lung function in patients with gastroesophageal reflux disease and end-stage lung disease before and after lung transplantation. Arch Surg 2011; 146 (9) 1041-1047
  • 156 Keenan RJ, Lega ME, Dummer JS , et al. Cytomegalovirus serologic status and postoperative infection correlated with risk of developing chronic rejection after pulmonary transplantation. Transplantation 1991; 51 (2) 433-438
  • 157 Cerrina J, Le Roy Ladurie F, Herve PH , et al. Role of CMV pneumonia in the development of obliterative bronchiolitis in heart-lung and double-lung transplant recipients. Transpl Int 1992; 5 (Suppl. 01) S242-S245
  • 158 Paraskeva M, Bailey M, Levvey BJ , et al. Cytomegalovirus replication within the lung allograft is associated with bronchiolitis obliterans syndrome. Am J Transplant 2011; 11 (10) 2190-2196
  • 159 Luckraz H, Sharples L, McNeil K, Wreghitt T, Wallwork J. Cytomegalovirus antibody status of donor/recipient does not influence the incidence of bronchiolitis obliterans syndrome in lung transplantation. J Heart Lung Transplant 2003; 22 (3) 287-291
  • 160 Keller CA, Cagle PT, Brown RW, Noon G, Frost AE. Bronchiolitis obliterans in recipients of single, double, and heart-lung transplantation. Chest 1995; 107 (4) 973-980
  • 161 Reichenspurner H, Girgis RE, Robbins RC , et al. Stanford experience with obliterative bronchiolitis after lung and heart-lung transplantation. Ann Thorac Surg 1996; 62 (5) 1467-1472 , discussion 1472–1473
  • 162 Weigt SS, Elashoff RM, Keane MP , et al. Altered levels of CC chemokines during pulmonary CMV predict BOS and mortality post-lung transplantation. Am J Transplant 2008; 8 (7) 1512-1522
  • 163 Ruttmann E, Geltner C, Bucher B , et al. Combined CMV prophylaxis improves outcome and reduces the risk for bronchiolitis obliterans syndrome (BOS) after lung transplantation. Transplantation 2006; 81 (10) 1415-1420
  • 164 Chmiel C, Speich R, Hofer M , et al. Ganciclovir/valganciclovir prophylaxis decreases cytomegalovirus-related events and bronchiolitis obliterans syndrome after lung transplantation. Clin Infect Dis 2008; 46 (6) 831-839
  • 165 Khalifah AP, Hachem RR, Chakinala MM , et al. Respiratory viral infections are a distinct risk for bronchiolitis obliterans syndrome and death. Am J Respir Crit Care Med 2004; 170 (2) 181-187
  • 166 Kumar D, Erdman D, Keshavjee S , et al. Clinical impact of community-acquired respiratory viruses on bronchiolitis obliterans after lung transplant. Am J Transplant 2005; 5 (8) 2031-2036
  • 167 Kumar D, Husain S, Chen MH , et al. A prospective molecular surveillance study evaluating the clinical impact of community-acquired respiratory viruses in lung transplant recipients. Transplantation 2010; 89 (8) 1028-1033
  • 168 Gottlieb J, Schulz TF, Welte T , et al. Community-acquired respiratory viral infections in lung transplant recipients: a single season cohort study. Transplantation 2009; 87 (10) 1530-1537
  • 169 Neurohr C, Huppmann P, Leuchte H , et al; Munich Lung Transplant Group. Human herpesvirus 6 in bronchalveolar lavage fluid after lung transplantation: a risk factor for bronchiolitis obliterans syndrome?. Am J Transplant 2005; 5 (12) 2982-2991
  • 170 Kotsimbos TC, Snell GI, Levvey B , et al. Chlamydia pneumoniae serology in donors and recipients and the risk of bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2005; 79 (3) 269-275
  • 171 Weigt SS, Derhovanessian A, Liao E , et al. CXCR3 chemokine ligands during respiratory viral infections predict lung allograft dysfunction. Am J Transplant 2012; 12 (2) 477-484
  • 172 Botha P, Archer L, Anderson RL , et al. Pseudomonas aeruginosa colonization of the allograft after lung transplantation and the risk of bronchiolitis obliterans syndrome. Transplantation 2008; 85 (5) 771-774
  • 173 Vos R, Vanaudenaerde BM, Geudens N, Dupont LJ, Van Raemdonck DE, Verleden GM. Pseudomonal airway colonisation: risk factor for bronchiolitis obliterans syndrome after lung transplantation?. Eur Respir J 2008; 31 (5) 1037-1045
  • 174 Gottlieb J, Mattner F, Weissbrodt H , et al. Impact of graft colonization with gram-negative bacteria after lung transplantation on the development of bronchiolitis obliterans syndrome in recipients with cystic fibrosis. Respir Med 2009; 103 (5) 743-749
  • 175 Vos R, Vanaudenaerde BM, Verleden SE , et al. Diagnostic value of antibodies against Pseudomonas aeruginosa in bronchoalveolar lavage fluid after lung transplantation. Transplant Proc 2010; 42 (10) 4415-4420
  • 176 Weigt SS, Elashoff RM, Huang C , et al. Aspergillus colonization of the lung allograft is a risk factor for bronchiolitis obliterans syndrome. Am J Transplant 2009; 9 (8) 1903-1911
  • 177 Martinu T, Howell DN, Davis RD, Steele MP, Palmer SM. Pathologic correlates of bronchiolitis obliterans syndrome in pulmonary retransplant recipients. Chest 2006; 129 (4) 1016-1023
  • 178 Speich R, Boehler A, Thurnheer R, Weder W. Salvage therapy with mycophenolate mofetil for lung transplant bronchiolitis obliterans: importance of dosage. Transplantation 1997; 64 (3) 533-535
  • 179 Whyte RI, Rossi SJ, Mulligan MS , et al. Mycophenolate mofetil for obliterative bronchiolitis syndrome after lung transplantation. Ann Thorac Surg 1997; 64 (4) 945-948
  • 180 Borro JM, Bravo C, Solé A , et al. Conversion from cyclosporine to tacrolimus stabilizes the course of lung function in lung transplant recipients with bronchiolitis obliterans syndrome. Transplant Proc 2007; 39 (7) 2416-2419
  • 181 Cairn J, Yek T, Banner NR, Khaghani A, Hodson ME, Yacoub M. Time-related changes in pulmonary function after conversion to tacrolimus in bronchiolitis obliterans syndrome. J Heart Lung Transplant 2003; 22 (1) 50-57
  • 182 Sarahrudi K, Carretta A, Wisser W , et al. The value of switching from cyclosporine to tacrolimus in the treatment of refractory acute rejection and obliterative bronchiolitis after lung transplantation. Transpl Int 2002; 15 (1) 24-28
  • 183 Snell GI, Esmore DS, Williams TJ. Cytolytic therapy for the bronchiolitis obliterans syndrome complicating lung transplantation. Chest 1996; 109 (4) 874-878
  • 184 Kesten S, Rajagopalan N, Maurer J. Cytolytic therapy for the treatment of bronchiolitis obliterans syndrome following lung transplantation. Transplantation 1996; 61 (3) 427-430
  • 185 Reams BD, Musselwhite LW, Zaas DW , et al. Alemtuzumab in the treatment of refractory acute rejection and bronchiolitis obliterans syndrome after human lung transplantation. Am J Transplant 2007; 7 (12) 2802-2808
  • 186 Gerhardt SG, McDyer JF, Girgis RE, Conte JV, Yang SC, Orens JB. Maintenance azithromycin therapy for bronchiolitis obliterans syndrome: results of a pilot study. Am J Respir Crit Care Med 2003; 168 (1) 121-125
  • 187 Gottlieb J, Szangolies J, Koehnlein T, Golpon H, Simon A, Welte T. Long-term azithromycin for bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2008; 85 (1) 36-41
  • 188 Porhownik NR, Batobara W, Kepron W, Unruh HW, Bshouty Z. Effect of maintenance azithromycin on established bronchiolitis obliterans syndrome in lung transplant patients. Can Respir J 2008; 15 (4) 199-202
  • 189 Shitrit D, Bendayan D, Gidon S, Saute M, Bakal I, Kramer MR. Long-term azithromycin use for treatment of bronchiolitis obliterans syndrome in lung transplant recipients. J Heart Lung Transplant 2005; 24 (9) 1440-1443
  • 190 Yates B, Murphy DM, Forrest IA , et al. Azithromycin reverses airflow obstruction in established bronchiolitis obliterans syndrome. Am J Respir Crit Care Med 2005; 172 (6) 772-775
  • 191 Vanaudenaerde BM, Meyts I, Vos R , et al. A dichotomy in bronchiolitis obliterans syndrome after lung transplantation revealed by azithromycin therapy. Eur Respir J 2008; 32 (4) 832-843
  • 192 Corris P, Small T, Ryan V , et al. A Randomised Controlled Trial Of Azithromycin Therapy In Bronchiolitis Obliterans Syndrome (BOS) Post Lung Transplantation [abstract]. Am J Respir Crit Care Med 2012; 185: A5324
  • 193 Knobler R. Extracorporeal photochemotherapy—present and future. Vox Sang 2000; 78 (Suppl. 02) 197-201
  • 194 Rook AH, Cohen JH, Lessin SR, Vowels BR. Therapeutic applications of photopheresis. Dermatol Clin 1993; 11 (2) 339-347
  • 195 Barr ML, Meiser BM, Eisen HJ , et al; Photopheresis Transplantation Study Group. Photopheresis for the prevention of rejection in cardiac transplantation. N Engl J Med 1998; 339 (24) 1744-1751
  • 196 Costanzo-Nordin MR, Hubbell EA, O'Sullivan EJ , et al. Successful treatment of heart transplant rejection with photopheresis. Transplantation 1992; 53 (4) 808-815
  • 197 Benden C, Speich R, Hofbauer GF , et al. Extracorporeal photopheresis after lung transplantation: a 10-year single-center experience. Transplantation 2008; 86 (11) 1625-1627
  • 198 Jaksch P, Scheed A, Keplinger M , et al. A prospective interventional study on the use of extracorporeal photopheresis in patients with bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 2012; 31 (9) 950-957
  • 199 Morrell MR, Despotis GJ, Lublin DM, Patterson GA, Trulock EP, Hachem RR. The efficacy of photopheresis for bronchiolitis obliterans syndrome after lung transplantation. J Heart Lung Transplant 2010; 29 (4) 424-431
  • 200 George JF, Gooden CW, Guo L, Kirklin JK. Role for CD4(+)CD25(+) T cells in inhibition of graft rejection by extracorporeal photopheresis. J Heart Lung Transplant 2008; 27 (6) 616-622
  • 201 Davis Jr RD, Lau CL, Eubanks S , et al. Improved lung allograft function after fundoplication in patients with gastroesophageal reflux disease undergoing lung transplantation. J Thorac Cardiovasc Surg 2003; 125 (3) 533-542
  • 202 Brugière O, Thabut G, Castier Y , et al. Lung retransplantation for bronchiolitis obliterans syndrome: long-term follow-up in a series of 15 recipients. Chest 2003; 123 (6) 1832-1837
  • 203 Kawut SM, Lederer DJ, Keshavjee S , et al. Outcomes after lung retransplantation in the modern era. Am J Respir Crit Care Med 2008; 177 (1) 114-120
  • 204 Palmer SM, Miralles AP, Lawrence CM, Gaynor JW, Davis RD, Tapson VF. Rabbit antithymocyte globulin decreases acute rejection after lung transplantation: results of a randomized, prospective study. Chest 1999; 116 (1) 127-133
  • 205 Hartwig MG, Snyder LD, Appel III JZ , et al. Rabbit anti-thymocyte globulin induction therapy does not prolong survival after lung transplantation. J Heart Lung Transplant 2008; 27 (5) 547-553
  • 206 Ailawadi G, Smith PW, Oka T , et al. Effects of induction immunosuppression regimen on acute rejection, bronchiolitis obliterans, and survival after lung transplantation. J Thorac Cardiovasc Surg 2008; 135 (3) 594-602
  • 207 Garrity Jr ER, Villanueva J, Bhorade SM, Husain AN, Vigneswaran WT. Low rate of acute lung allograft rejection after the use of daclizumab, an interleukin 2 receptor antibody. Transplantation 2001; 71 (6) 773-777
  • 208 Lischke R, Simonek J, Davidová R , et al. Induction therapy in lung transplantation: initial single-center experience comparing daclizumab and antithymocyte globulin. Transplant Proc 2007; 39 (1) 205-212
  • 209 Brock MV, Borja MC, Ferber L , et al. Induction therapy in lung transplantation: a prospective, controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant 2001; 20 (12) 1282-1290
  • 210 McCurry KR, Iacono A, Zeevi A , et al. Early outcomes in human lung transplantation with Thymoglobulin or Campath-1H for recipient pretreatment followed by posttransplant tacrolimus near-monotherapy. J Thorac Cardiovasc Surg 2005; 130 (2) 528-537
  • 211 Shyu S, Dew MA, Pilewski JM , et al. Five-year outcomes with alemtuzumab induction after lung transplantation. J Heart Lung Transplant 2011; 30 (7) 743-754
  • 212 McNeil K, Glanville AR, Wahlers T , et al. Comparison of mycophenolate mofetil and azathioprine for prevention of bronchiolitis obliterans syndrome in de novo lung transplant recipients. Transplantation 2006; 81 (7) 998-1003
  • 213 Keenan RJ, Konishi H, Kawai A , et al. Clinical trial of tacrolimus versus cyclosporine in lung transplantation. Ann Thorac Surg 1995; 60 (3) 580-584 , discussion 584–585
  • 214 Treede H, Klepetko W, Reichenspurner H , et al; Munich and Vienna Lung Transplant Group. Tacrolimus versus cyclosporine after lung transplantation: a prospective, open, randomized two-center trial comparing two different immunosuppressive protocols. J Heart Lung Transplant 2001; 20 (5) 511-517
  • 215 Hachem RR, Yusen RD, Chakinala MM , et al. A randomized controlled trial of tacrolimus versus cyclosporine after lung transplantation. J Heart Lung Transplant 2007; 26 (10) 1012-1018
  • 216 Treede H, Glanville AR, Klepetko W , et al; European and Australian Investigators in Lung Transplantation. Tacrolimus and cyclosporine have differential effects on the risk of development of bronchiolitis obliterans syndrome: results of a prospective, randomized international trial in lung transplantation. J Heart Lung Transplant 2012; 31 (8) 797-804
  • 217 Levy G, Thervet E, Lake J, Uchida K. Consensus on Neoral C(2): Expert Review in Transplantation (CONCERT) Group. Patient management by Neoral C(2) monitoring: an international consensus statement. Transplantation 2002; 73 (9, Suppl): S12-S18
  • 218 Snell GI, Valentine VG, Vitulo P , et al; RAD B159 Study Group. Everolimus versus azathioprine in maintenance lung transplant recipients: an international, randomized, double-blind clinical trial. Am J Transplant 2006; 6 (1) 169-177
  • 219 Dutly AE, Gaspert A, Inci I, Schneiter D, Korom S, Weder W. The influence of the rapamycin-derivate SDZ RAD on the healing of airway anastomoses. Eur J Cardiothorac Surg 2003; 24 (1) 154-158 , discussion 158
  • 220 Scott JP, Smyth RL, Higenbottam T, Mullins P, Solis E, Wallwork J. Transbronchial biopsy after lung transplantation. J Thorac Cardiovasc Surg 1991; 101 (5) 935-937
  • 221 Kukafka DS, O'Brien GM, Furukawa S, Criner GJ. Surveillance bronchoscopy in lung transplant recipients. Chest 1997; 111 (2) 377-381
  • 222 Arcasoy SM, Berry G, Marboe CC , et al. Pathologic interpretation of transbronchial biopsy for acute rejection of lung allograft is highly variable. Am J Transplant 2011; 11 (2) 320-328
  • 223 Stephenson A, Flint J, English J , et al. Interpretation of transbronchial lung biopsies from lung transplant recipients: inter- and intraobserver agreement. Can Respir J 2005; 12 (2) 75-77
  • 224 Hopkins PM, Aboyoun CL, Chhajed PN , et al. Prospective analysis of 1,235 transbronchial lung biopsies in lung transplant recipients. J Heart Lung Transplant 2002; 21 (10) 1062-1067
  • 225 Valentine VG, Gupta MR, Weill D , et al. Single-institution study evaluating the utility of surveillance bronchoscopy after lung transplantation. J Heart Lung Transplant 2009; 28 (1) 14-20
  • 226 Levine SM. Transplant/Immunology Network of the American College of Chest Physicians. A survey of clinical practice of lung transplantation in North America. Chest 2004; 125 (4) 1224-1238
  • 227 Sayegh MH, Fine NA, Smith JL, Rennke HG, Milford EL, Tilney NL. Immunologic tolerance to renal allografts after bone marrow transplants from the same donors. Ann Intern Med 1991; 114 (11) 954-955
  • 228 Scandling JD, Busque S, Dejbakhsh-Jones S , et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med 2008; 358 (4) 362-368
  • 229 Kawai T, Cosimi AB, Spitzer TR , et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 2008; 358 (4) 353-361
  • 230 Leventhal J, Abecassis M, Miller J , et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci Transl Med 2012; 4 (124) 24ra28
  • 231 Pham SM, Rao AS, Zeevi A , et al. Effects of donor bone marrow infusion in clinical lung transplantation. Ann Thorac Surg 2000; 69 (2) 345-350