Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2013; 23(04): 225-230
DOI: 10.1055/s-0033-1347205
Wissenschaft und Forschung
© Georg Thieme Verlag KG Stuttgart · New York

Eignung des hochfrequenten Spektralbandes der Herzratenvariabilität für die Leistungsdiagnostik im Wasser

High Power Spectral Density of Heart Rate Variability as a Measure of Exercise Performance in Water
M. Fenzl
1   Resortragaz, Medizinisches Zentrum, Bad Ragaz, Schweiz
,
C. Schlegel
2   Resortragaz, Swiss Olympic Medical Center, Bad Ragaz, Schweiz
,
B. Villiger
3   Schweizer Paraplegiker-Zentrum, CEO, Nottwil, Schweiz
,
N. Aebli
4   Schweizer Paraplegiker-Zentrum, CTU, Nottwil, Schweiz
,
J. Gredig
5   Swissrehamed, Chur, Schweiz
,
J. Krebs
4   Schweizer Paraplegiker-Zentrum, CTU, Nottwil, Schweiz
› Author Affiliations
Further Information

Publication History

eingereicht: 13 February 2013

angenommen: 06 May 2013

Publication Date:
13 August 2013 (online)

Zusammenfassung

Problemstellung:

In der Sportmedizin bestehen zum Herzratenvariabilität (HRV) – Schwellenkonzept keine vergleichenden experimentellen Grundlagen mit Standardtestverfahren im Wasser.

Methode:

Bei 12 anamnestisch gesunden und trainierten Probanden wurde während Ergometerbelastungen (Arm-/Beindrehkurbel) im Wasser und an Land spirografisch der Gasstoffwechsel gemessen. Zeitsynchron mit der Erfassung respiratorischer Parameter wurde die hochfrequente Komponente der HRV (logarhithmierte HF-Leistung, lnHF) mit einem EKG auf jeder Belastungsstufe zeitkontinuierlich aufgezeichnet. Aus dem Produkt lnHF und der Zentralherzfrequenz wurde verlaufskinetisch die Leistung (Watt) an der respiratorischen Schwelle 2 quantitativ bestimmt und mit der reliablen Messmethodik der Gasanalyse verglichen.

Ergebnis:

Die Differenzen der mittleren Leistungskennwerte unterscheiden sich nicht (p>0,05). Der mittlere Bias weicht nur wenig von Null ab (−0,6 Watt). Die Übereinstimmungsgrenzen liegen zwischen −20,1 und 18,8 Watt.

Diskussion:

Auf der Basis eines quantitativen Vergleichs der Leistungskennwerte stimmt das HRV-Schwellenkonzept mit dem respiratorischen Referenzverfahren auch bei Arm-/Bein-Drehkurbelarbeit im Wasser gut überein.

Abstract

Objectives:

Heart rate variability (hrv) is an established parameter for analyzing performance in sports medicine. However, no valid data are available for standard test situations in water.

Methods:

12 trained healthy persons performed maximal graded exercise tests on a whole body cycling ergometer. Gas exchange (VO2, VCO2) and the vagally modulated short time variability parameter lnHF were monitored with a Holter device during each step. The expired air and lnHF were analyzed for exceeding anaerobic energy expenditure (ventilatory threshold 2, VT2) and compared with each other.

Results:

There was no significant difference between the means of the VT2 determined by the 2 different methods (p>0.05), and the bias was close to zero (−0.6 Watt). The confidence interval (1.96 SD) of the mean differences has been found to be between −20.1 and 18.8 Watts.

Discussion:

The quantitative comparison of gas exchange measurements with hrv showed a strong correlation between both parameters on a whole body ergometer in water. Both methods can be used interchangeably.

 
  • Literatur

  • 1 Kamioka H, Tsutani K, Okuizumi H et al. Effectiveness of aquatic exercise and balneotherapy: a summary of systematic reviews based on randomized controlled trials of water immersion therapies. J Epidemiol 2009; 20: 2-12
  • 2 Wallace JP. Obesity. In: Durstine JL, Moore GE. (eds.). ACMS’s exercise management for persons with chronic diseases and disabilities. Champaing IL: Humans Kinetics; 2003: 149-156
  • 3 Meyer K, Bücking J. Wassertherapie bei Herzinsuffizienz. Dt Z Sport Med 2005; 56: 403-409
  • 4 Bircher S, Knechtle B, Knecht H. Is the intensity of the highest fat oxidation at the lactate concentration of 2 mmol/l? A comparison of two different exercise protocols. Eur J Clin Invest 2005; 35: 491-498
  • 5 Christie JL, Sheldahl LM, Tristani FE. Cardiovascular regulation during head-out water immersion exercise. J Appl Physiol 1990; 69: 657-664
  • 6 Sheldahl LM, Wann LS, Clifford PS et al. Effect of central hypervolemia on cardiac performance during exercise. J Appl Physiol: Respirat Environ Exercise Physiol 1984; 57: 1662-1667
  • 7 Hottenrott K, Hoos O. Herzfrequenzvariabilität im Sport – Gesicherte und neue Erkenntnisse. In: Hottenrott K, Hoos O, Esperer D. (eds.). Herzfrequenzvariabilität: Risikodiagnostik, Stressanalyse, Belastungssteuerung (Schriften der Deutschen Vereinigung für Sportwissenschaft 192). Czwalina: Hamburg; 2009: 34-49
  • 8 Rowell LB, Loring B, Donal S et al. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol 1990; 69: 407-418
  • 9 Shin K, Minamitani H, Onishi S et al. The power of spectral analysis of heart rate variability in athletes during exercise in normal man. Clin Cardiol 1995; 180: 583-586
  • 10 Warren JH, Jaffe RS, Wraa CE et al. Effect of autonomic blockade on power spectrum of heart rate variability during exercise. Am J Physiol 1997; 273: 583-586
  • 11 Arai Y, Saul JP, Albrecht P et al. Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 1989; 256: H132-H141
  • 12 Bernardi L, Piepoli MF. Autonomic nervous system adaptation during physical exercise. Ital Heart J 2001; 2: 831-839
  • 13 Casadei B, Cochrane JE, Johnston J et al. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand 1995; 153: 125-131
  • 14 Pichon A, de Bisschop C, Roulaud M et al. Spectral analysis of heart rate variability during exercise in trained subjects. Med Sci Sports Exerc 2004; 36: 1702-1708
  • 15 Anosov O, Patzak A, Kononovich Y et al. High-frequency oscillations of the heart rate during ramp load reflect the human anaerobic threshold. Eur J Appl Physiol 2000; 83: 388-394
  • 16 Blain G, Meste O, Bouchard T et al. Assessment of ventilatory thresholds during graded and maximal exercise test using time varying analysis of respiratory sinus arrhythmia. Br J Sports Med 2005; 39: 448-452
  • 17 Cottin F, Lepretre PM, Lopes P et al. Assessment of ventilatory thresholds from heart rate variability in well-trained subjects during cycling. Int J Sports Med 2006; 27: 959-967
  • 18 Cottin F, Medigue C, Lopes P et al. Ventilatory thresholds assessment from heart rate variability during an incremental exhaustive running test. Int J Sports Med 2007; 28: 287-294
  • 19 Perini R, Milesi S, Bioncardi L et al. Heart rate variability in exercising humans: effect of water immersion. Eur J Appl Physiol 1998; 77: 326-332
  • 20 Seps B, Beckers F, Aubert AE. Head out of water immersion as simula­tion study: A heart rate variability study. J Gravit Physiol 2002; 9: 95-96
  • 21 Fenzl M, Krebs J, Villiger B et al. Leistungsmessungen im Wasser mit einem neuen Kraftmesskurbelsystem. Phys Med Rehab Kuror 2012; 22: 183-188
  • 22 Gibbons E. The significance of anaerobic threshold in excercise prescription. J Sports Med physic Fitness 1987; 27: 357-361
  • 23 Wasserman K, Hansen J, Sue D et al. Principles of exercise testing and interpretation. Philadelphia: Williams and Wilkings; 2005
  • 24 Crawford MH, Gibbons RJ. ACC/AHA guidelines for ambulatory electrography. J Am Coll Cardiol 1999; 34: 912-948
  • 25 Malik M, Bigger J, Camm A et al. Standards of measurement, physiological interpretation and clinical use. Eur Heart J 1996; 17: 354-381
  • 26 Neumann G, Pfützner A, Berbalk A. Optimiertes Ausdauertraining. Aachen: Meyer & Meyer; 2001
  • 27 Cottin F, Medigue C, Lepretre PM et al. Heart rate variability during exercise performed below and above ventilatory threshold. Med Sci Sports Exerc 2004; 36: 594-600
  • 28 Kiviniemi AM, Hautala AJ, Kinnunen H et al. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol 2007; 101: 743-751
  • 29 Kohl P, Hunter P, Noble D. Stretch-induced changes in heart rate and rhythm: clinical observations, experiments, and mathematical models. Prog Biophys Mol Biol 1999; 71: 91-138
  • 30 Pinna G. Assessing baroreflex sensitivity by the transfer function method: what we are really measuring. J Appl Physiol 2007; 102: 1310-1311
  • 31 Botek M, Stejskal P, Krejci J. Vagal threshold determination. Effect of age and gender. Int J Sports Med 2010; 31: 768-772
  • 32 Sheldahl LM, Tristani FE, Clifford PS et al. Effect of head-out water immersion on cardiorespiratory response to dynamic exercise. J Am Coll Cardiol 1987; 10: 1254-1258
  • 33 Schnizer W, Fenzl M, Knüsel O et al. Zur Frage einer Korrektur der Trainingsherzfrequenz im Wasser. Bedeutung der Wassertemperatur?. Phys Med Rehab Kuror 2006; 16: 330-336
  • 34 Achten J, Jeukendrup AE. Relation between plasma lactate concentration and fat oxidation rates over a wide range of exercise intensities. Int J Sports Med 2004; 25: 32-37