Pharmacopsychiatry 2013; 46(S 01): S53-S63
DOI: 10.1055/s-0033-1337920
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

The Neurochemical Mobile with Non-Linear Interaction Matrix: An Exploratory Computational Model

Z. Qi
1   Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, USA
2   Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA, USA
3   Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
,
D. Fieni
1   Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, USA
,
F. Tretter
4   Isar-Amper-Klinikum gemeinnützige GmbH, Klinikum München-Ost, Haar, Landkreis München, Germany
,
E. O. Voit
1   Department of Biomedical Engineering, Georgia Institute of Technology and Emory University Medical School, Atlanta, GA, USA
2   Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA, USA
› Author Affiliations
Further Information

Publication History

Publication Date:
18 April 2013 (online)

Abstract

Several years ago, the “neurochemical mobile” was introduced as a visual tool for explaining the different balances between neurotransmitters in the brain and their role in mental disorders. Here we complement this concept with a non-linear computational systems model representing the direct and indirect interactions between neurotransmitters, as they have been described in the “neurochemical interaction matrix.” The model is constructed within the framework of biochemical systems theory, which facilitates the mapping of numerically ill-characterized systems into a mathematical and computational construct that permits a variety of analyses. Simulations show how short- and long-term perturbations in any of the neurotransmitters migrate through the entire system, thereby affecting the balances within the mobile. In cases of short-term alterations, transients are of particular interest, whereas long-term changes shed light on persistently altered, allostatic states, which in mental diseases and sleep disorders could be due to a combination of unfavorable factors, resulting from a specific genetic predisposition, epigenetic effects, disease, or the repeated use of drugs, such as opioids and amphetamines.

 
  • References

  • 1 Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976; 192: 481-483
  • 2 Davis KL, Kahn RS, Ko G et al. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991; 148: 1474-1486
  • 3 Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III – -the final common pathway. Schizophr Bull 2009; 35: 549-562
  • 4 Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 1991; 148: 1301-1308
  • 5 Krystal JH, Karper LP, Seibyl JP et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199-214
  • 6 Parwani A, Weiler MA, Blaxton TA et al. The effects of a subanesthetic dose of ketamine on verbal memory in normal volunteers. Psychopharmacology (Berl) 2005; 183: 265-274
  • 7 Perry TL, Kish SJ, Buchanan J et al. Gamma-aminobutyric-acid deficiency in brain of schizophrenic patients. Lancet 1979; 1: 237-239
  • 8 Seeman P, Chau-Wong M, Tedesco J et al. Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 1975; 72: 4376-4380
  • 9 Seeman P, Lee T, Chau-Wong M et al. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261: 717-719
  • 10 Umbricht D, Schmid L, Koller R et al. Ketamine-induced deficits in auditory and visual context-dependent processing in healthy volunteers: implications for models of cognitive deficits in schizophrenia. Arch Gen Psychiatry 2000; 57: 1139-1147
  • 11 Carlsson A. The current state of the dopamine hypothesis of schizophrenia. Neuropsychopharmacol 1988; 1: 179-186
  • 12 Carlsson A, Waters N, Holm-Waters S et al. Interactions between monoamines, glutamate, and GABA in schizophrenia: New Evidence. Annu Rev Pharmacol Toxicol 2001; 41: 237-260
  • 13 Koob G, Le Moal M. Neurobiology of Addiction. New York: Academic Press; 2006
  • 14 Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise-ratio in schizophrenia. Trends in Neurosciences 2004; 27: 683-690
  • 15 Goto Y, Grace AA. The dopamine system and the pathophysiology of schizophrenia: a basic science perspective. Int Rev Neurobiol 2007; 78: 41-68
  • 16 Guillin O, Abi-Dargham A, Laruelle M. Neurobiology of dopamine in schizophrenia. Int Rev Neurobiol 2007; 78: 1-39
  • 17 Aghajanian GK, Marek GJ. Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Research Reviews 2000 31: 302-312
  • 18 Vollenweider FX, Kometer M. The neurobiology of psychedelic drugs: implications for the treatment of mood disorders. Nature Reviews Neuroscience 2010; 11: 642-651
  • 19 Wassef A, Baker J, Kochan LD. GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 2003; 23: 601-640
  • 20 Yamamoto K, Hornykiewicz O. Proposal for a noradrenaline hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 913-922
  • 21 Berman JA, Talmage DA, Role LW. Cholinergic circuits and signaling in the pathophysiology of schizophrenia. Int Rev Neurobiol 2007; 78: 193-223
  • 22 Moghaddam B. Bringing order to the glutamate chaos in schizophrenia. Neuron 2003; 40: 881-884
  • 23 Trimble MR. Biological Psychiatry. New York: Wiley; 2002
  • 24 Tretter F, Albus M. Einfürhung in die Psychiopharmakotherapie. Stuttgart: Thieme; 2004
  • 25 Cooper JR, Bloom FE, Roth RH. The Biochemical Basis of Neuropharmacology. New York: Oxford University Press; 2004
  • 26 Krystal JH. N-methyl-D-aspartate glutamate receptor antagonists and the promise of rapid-acting antidepressants. Arch, Gen Psychiatry 2010; 67: 1110-1111
  • 27 Luscher B, Shen QNS. The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 2010; 16: 383-406
  • 28 Schatzberg AF, Rothschild AJ, Langlais P et al. A corticosteroid/dopamine hypothesis for psychotic depression and related states. J Psychiatr Res 1985; 19: 57-64
  • 29 Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Amer J Psychiat 1965; 122: 609-622
  • 30 Coppen A. The biochemistry of affective disorders. Br J Psychiatry 1967; 113: 1237-1264
  • 31 Janowsky DS, Overstreet DH. The role of acetylcholine mechanisms in mood disorders. New York: Raven Press; 1995
  • 32 Blier P, El Mansari M. The importance of serotonin and noradrenaline in anxiety. Int J Psychiatry Clin Pract 2007; 11: 16-23
  • 33 Degroot A, Treit D. Dorsal and ventral hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Brain Res 2002; 949: 60-70
  • 34 Heinz A, Siessmeier T, Wrase J et al. Correlation between dopamine D2 receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 2004; 101: 1783-1789
  • 35 Tretter F. Suchtmedizin. Suchtkrankeiten in Klinik und Praxis. Stuttgart: Schattauer; 2008
  • 36 Benes FM. Neural circuitry models of schizophrenia: is it dopamine, GABA, glutamate or something else?. Biol Psychiatry 2009; 65: 1003-1005
  • 37 Tretter F, an der Heiden U, Rujescu D et al. Computational modeling of schizophrenic symptoms – basic issues. Pharmacopsychiatry 2012; 45: S2-S11
  • 38 an der Heiden U. Schizophrenia as a dynamical disease. Pharmacopsychiatry 2006; 39: S36-S42
  • 39 Bélair J, Glass L, an der Heiden U et al. (eds.). Dynamical disease – mathematical analysis of human illness. Woodbury, USA: American Institute of Physics; 1995
  • 40 Tretter F, Gebicke-Haerter PJ, an der Heiden U et al. Affective disorders as complex dynamic diseases – a perspective from systems biology. Pharmacopsychiatry 2011; 44: S2-S8
  • 41 Tretter F, Gebicke-Haerter PJ, Mendoza ER et al. (eds.). Systems Biology in Psychiatric Research: From High-Throughput Data to Mathematical Modelling. Weinheim: Wiley-VCH; 2010
  • 42 Voit EO. A First Course in Systems Biology. New York, NY: Garland Science; 2012
  • 43 Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011; 12: 56-68
  • 44 Wang K, Lee I, Carlson G et al. Systems biology and the discovery of diagnostic biomarkers. Dis Markers 2010; 28: 199-207
  • 45 Voit EO. A systems-theoretical framework for health and disease: inflammation and preconditioning from an abstract modeling point of view. Mathematical biosciences 2009; 217: 11-18
  • 46 Fritze J. Biologische Psychiatrie. Stuttgart: Fischer; 1989
  • 47 Bender W, Albus M, Mőller H-J et al. Towards systemic theoriesin biological psychiatry. Pharnmacopsychiatry 2006; 39: S4-S9
  • 48 Iversen LL, Iversen SD, Bloom F et al. Introduiction to Neuropsychopharmacology. New York: Oxford Unvi. Press; 2009
  • 49 Savageau MA. Biochemical systems analysis. I. Some mathematical properties of the rate law for the component enzymatic reactions. J Theor Biol 1969; 25: 365-369
  • 50 Savageau MA. Biochemical systems analysis: a study of function and design in molecular biology. Reading, Mass.: Addison-Wesley Pub. Co. Advanced Book Program; 1976
  • 51 Torres NV, Voit EO. Pathway Analysis and Optimization in Metabolic Engineering. Cambridge, U.K.: Cambridge University Press; 2002
  • 52 Voit EO. (ed.) Canonical Nonlinear Modeling. S-System Approach to Understanding Complexity. Van Nostrand Reinhold; NY: 1991
  • 53 Voit EO. Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists. Cambridge, UK: Cambridge University Press; 2000
  • 54 Voit EO. Biuochemical Systems Theory: A Review. International Scholarly Research Network (ISRN) – Biomathematics 2013; DOI: 897658.
  • 55 Noble D. The aims of systems biology: between molecules and organisms. Pharmacopsychiatry 2011; 44 (Suppl. 01) S9-S14
  • 56 Voit EO, Qi Z, Kikuchi S. Mesoscopic models of neurotransmission as intermediates between disease simulators and tools for discovering design principles. Pharmacopsychiatry 2012; 45 (Suppl. 01) S22-S30
  • 57 Breen G, McGuffin P, Simmons A. Towards “systems psychiatry”. Rev Bras Psiquiatr 2008; 30: 97-98
  • 58 Craver C. Explaining the Brain. New York: Oxford University Press; 2007
  • 59 Qi Z, Miller GW, Voit EO. Computational systems analysis of dopamine metabolism. PLoS One 2008; 3: e2444
  • 60 Qi Z, Miller GW, Voit EO. A mathematical model of presynaptic dopamine homeostasis: implications for schizophrenia. Pharmacopsychiatry 2008; 41 (Suppl. 01) S89-S98
  • 61 Herz AV, Gollisch T, Machens CK et al. Modelling single-neuron dynamics and computations: a balance of detail and abstraction. Science 2006; 314: 0-85
  • 62 Danbolt N. Glutamate as a neurotransmitter – An overview. Center for Molecular Biology and Neuroscience 2012;
  • 63 Divino Filho JC, Hazel SJ, Furst P et al. Glutamate concentration in plasma, erythrocyte and muscle in relation to plasma levels of insulin-like growth factor (IGF)-I, IGF binding protein-1 and insulin in patients on haemodialysis. J Endocrinol 1998; 156: 519-527
  • 64 Goldstein DS, Eisenhofer G, Kopin IJ. Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Therap 2003; 305: 800-811
  • 65 (US) NLoM . Serum Serotonin Level: MedlinePlus Medical Encyclopedia. 2012;
  • 66 Minuk GY, Winder A, Burgess ED et al. Serum gamma-aminobutyric acid (GABA) levels in patients with hepatic encephalopathy. Hepato-gastroenterology 1985; 32: 171-174
  • 67 Pickut W. What are abnormal dopamine levels?. Livestrong.com 2011
  • 68 Plaitakis A, Shashidharan P. Amyotrophic lateral sclerosis, glutamate, and oxidative stress. In: Bloom FF. Kupfer DJ. eds. The Fourth Generation. 1995: pp 1531-1543
  • 69 Schulz P, Lloyd KG, Voltz C et al. The plasma concentration of GABA shows no evidence of a circadian-rhythm and is stable over weeks in normal males. Biol Rhythm Res 1994; 25: 291-300
  • 70 Taylor MJ. The Normal Levels of Norepinephrine in the Body. In: Media D. ed. EHow. 2010
  • 71 Ferreira A. Power Law Analysis and Simulation. Version 1.2 ed2000
  • 72 Patkar AA, Gopalakrishnan R, Naik PC et al. Changes in plasma noradrenaline and serotonin levels and craving during alcohol withdrawal. Alcohol and alcoholism 2003; 38: 224-231
  • 73 Linnoila M, Mefford I, Nutt D et al. NIH conference. Alcohol withdrawal and noradrenergic function. Ann intern med 1987; 107: 875-889