Fortschr Neurol Psychiatr 2013; 81(S 01): S17-S21
DOI: 10.1055/s-0033-1335378
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Bildgebende Verfahren bei bipolaren Erkrankungen

Neuroimaging of Bipolar Disorders
A. Grunze
1   East CMHT, NTW NHS Foundation Trust, Newcastle upon Tyne, UK
,
E. Meisenzahl
2   Klinik für Psychiatrie und Psychotherapie, Ludwigs-Maximillians Universität, Műnchen
,
H. Grunze
3   Academic Psychiatry, Institute of Neuroscience, Newcastle upon Tyne, UK
› Author Affiliations
Further Information

Publication History

Publication Date:
16 May 2013 (online)

Zusammenfassung

Sowohl in der strukturellen als auch in der funktionellen Bildgebung bei affektiven Störungen haben sich in den letzten Jahren deutliche Fortschritte ergeben. Strukturelle Veränderungen im limbischen System, präfrontalen Kortex sowie in subkortikalen Bereichen – einschließlich ihrer faszikulären Verbindungen – scheinen in den meisten, aber nicht in allen Untersuchungen mit affektiven Störungen zu korrelieren. Insbesondere bei bipolaren Störungen zeigt sich hier noch eine deutliche Varianz der Ergebnisse. Funktionelle Neuro-Imaging-Verfahren wie fMRI, PET und SPECT unterstreichen die besondere Bedeutung paralimbischer, kortikaler und subkortikaler Strukturen in der Affektregulation; allerdings steckt die Methodik dieser Untersuchungen noch in den Kinderschuhen, so dass die Reproduzierbarkeit der Ergebnisse nicht immer gegeben ist. Zusammenfassend ist jedoch abzusehen, dass mit einer weiteren Verfeinerung der Methodik der funktionellen Bildgebung auch bei affektiven, einschließlich bipolaren Störungen in Zukunft eine wachsende Bedeutung zukommen wird.

Abstract

During recent years, marked progress has been made both in structural and functional neuroimaging of affective disorders. Structural changes in the limbic system, prefrontal cortex and subcortical regions including their fascicular connections appear to correlate with affective disorders in most, but not all studies. Especially for bipolar disorder, there still is a considerable heterogeneity among the results. Functional neuroimaging (fMRI, SPECT, PET) underlines the importance of paralimbic, cortical and subcortical structures in mood regulation; however, the methodology of these studies is still in its infancy meaning that the results of these studies are not always reproducible. However, in summary it can be expected that with improving methodology functional neuroimaging will play an increasing role in affective, including bipolar, disorders in the near future.

 
  • Literatur

  • 1 Ashburner J, Friston KJ. Voxel-based morphometry – the methods. Neuroimage 2000; 11: 805-821
  • 2 Fontenelle LF, Harrison BJ, Yucel M et al. Is there evidence of brain white-matter abnormalities in obsessive-compulsive disorder? A narrative review. Top Magn Reson Imaging 2009; 20: 291-298
  • 3 Thomaes K, Dorrepaal E, Draijer N et al. Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. J Clin Psychiatry 2010; 71: 1636-1644
  • 4 Brunner R, Henze R, Parzer P et al. Reduced prefrontal and orbitofrontal gray matter in female adolescents with borderline personality disorder: is it disorder specific?. Neuroimage 2010; 49: 114-120
  • 5 Frey BN, Zunta-Soares GB, Caetano SC et al. Illness duration and total brain gray matter in bipolar disorder: evidence for neurodegeneration?. Eur Neuropsychopharmacol 2008; 18: 717-722
  • 6 Lisy ME, Jarvis KB, DelBello MP et al. Progressive neurostructural changes in adolescent and adult patients with bipolar disorder. Bipolar Disord 2011; 13: 396-405
  • 7 Starkstein SE, Robinson RG. Affective disorders and cerebral vascular disease. Br J Psychiatry 1989; 154: 170-182
  • 8 Stern RA, Bachman DL. Depressive symptoms following stroke. Am J Psychiatry 1991; 148: 351-356
  • 9 Starkstein SE, Pearlson GD, Boston J et al. Mania after brain injury. A controlled study of causative factors. Arch Neurol 1987; 44: 1069-1073
  • 10 Starkstein SE, Robinson RG, Honig MA et al. Mood changes after right-hemisphere lesions. Br J Psychiatry 1989; 155: 79-85
  • 11 Berthier ML, Kulisevsky J, Gironell A et al. Poststroke bipolar affective disorder: clinical subtypes, concurrent movement disorders, and anatomical correlates. J Neuropsychiatry Clin Neurosci 1996; 8: 160-167
  • 12 Videbech P, Ravnkilde B. Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 2004; 161: 1957-1966
  • 13 Hastings RS, Parsey RV, Oquendo MA et al. Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology 2004; 29: 952-959
  • 14 Drevets WC, Price JL, Simpson Jr JR et al. Subgenual prefrontal cortex abnormalities in mood disorders. Nature 1997; 386: 824-827
  • 15 Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci 2012; 16: 61-71
  • 16 Salloway S, Cummings J. Subcortical disease and neuropsychiatric illness. J Neuropsychiatry Clin Neurosci 1994; 6: 93-99
  • 17 Baumann B, Bogerts B. Neuroanatomical studies on bipolar disorder. Br J Psychiatry 2001; 178: 142-147
  • 18 Gigante AD, Young LT, Yatham LN et al. Morphometric post-mortem studies in bipolar disorder: possible association with oxidative stress and apoptosis. Int J Neuropsychopharmacol 2011; 14: 1075-1089
  • 19 Todtenkopf MS, Vincent SL, Benes FM. A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 2005; 73: 79-89
  • 20 Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry 2000; 48: 766-777
  • 21 Benedetti F, Absinta M, Rocca MA et al. Tract-specific white matter structural disruption in patients with bipolar disorder. Bipolar Disord 2011; 13: 414-424
  • 22 Campbell S, Macqueen G. An update on regional brain volume differences associated with mood disorders. Curr Opin Psychiatry 2006; 19: 25-33
  • 23 Chen PS, McQuoid DR, Payne ME et al. White matter and subcortical gray matter lesion volume changes and late-life depression outcome: a 4-year magnetic resonance imaging study. Int Psychogeriatr 2006; 18: 445-456
  • 24 Stoll AL, Renshaw PF, Yurgelun-Todd DA et al. Neuroimaging in bipolar disorder: what have we learned?. Biol Psychiatry 2000; 48: 505-517
  • 25 Strakowski SM. Integration and consolidation – a neurophysiological model of bipolar disorder. In: Strakowski SM, (Hrsg). The Bipolar Brain: Integrating Neuroimaging and Genetics. New York: Oxford University Press; 2012: 253-274
  • 26 Pfeifer JC, Welge J, Strakowski SM et al. Meta-analysis of amygdala volumes in children and adolescents with bipolar disorder. J Am Acad Child Adolesc Psychiatry 2008; 47: 1289-1298
  • 27 Kempton MJ, Geddes JR, Ettinger U et al. Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry 2008; 65: 1017-1032
  • 28 Lyoo IK, Dager SR, Kim JE et al. Lithium-induced gray matter volume increase as a neural correlate of treatment response in bipolar disorder: a longitudinal brain imaging study. Neuropsychopharmacology 2010; 35: 1743-1750
  • 29 Cousins DA, Aribisala B, Nicol F et al. Lithium, gray matter, and magnetic resonance imaging signal. Biol Psychiatry 2013; 73: 652-657
  • 30 Perlman SB, Almeida JR, Kronhaus DM et al. Amygdala activity and prefrontal cortex-amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder. Bipolar Disord 2012; 14: 162-174
  • 31 Mullin BC, Perlman SB, Versace A et al. An fMRI study of attentional control in the context of emotional distracters in euthymic adults with bipolar disorder. Psychiatry Res 2012; 201: 196-205
  • 32 Almeida JR, Versace A, Mechelli A et al. Abnormal amygdala-prefrontal effective connectivity to happy faces differentiates bipolar from major depression. Biol Psychiatry 2009; 66: 451-459
  • 33 Strakowski SM, Adler CM, Almeida J et al. The functional neuroanatomy of bipolar disorder: a consensus model. Bipolar Disord 2012; 14: 313-325
  • 34 Adler CM, DelBello MP, Strakowski SM. Brain network dysfunction in bipolar disorder. CNS Spectr 2006; 11: 312-320
  • 35 Lim CS, Baldessarini RJ, Vieta E et al. Longitudinal neuroimaging and neuropsychological changes in bipolar disorder patients: Review of the evidence. Neurosci Biobehav Rev 2013; 37: 418-435
  • 36 Bennett CM, Baird AA, Miller MB et al. Neural Correlates of Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An Argument For Proper Multiple Comparisons Correction. Journal of Serendipitous and Unexpected Results 2010; 1: 1-5
  • 37 Raichle ME. Functional brain imaging and human brain function. J Neurosci 2003; 23: 3959-3962
  • 38 Kennedy SH, Javanmard M, Vaccarino FJ. A review of functional neuroimaging in mood disorders: positron emission tomography and depression. Can J Psychiatry 1997; 42: 467-475
  • 39 Smith DJ, Cavanagh JT. The use of single photon emission computed tomography in depressive disorders. Nucl Med Commun 2005; 26: 197-203
  • 40 Mayberg HS. Positron emission tomography imaging in depression: a neural systems perspective. Neuroimaging Clin N Am 2003; 13: 805-815
  • 41 Cousins DA, Grunze H. Interpreting magnetic resonance imaging findings in bipolar disorder. CNS Neurosci Ther 2012; 18: 201-207
  • 42 Townsend J, Altshuler LL. Emotion processing and regulation in bipolar disorder: a review. Bipolar Disord 2012; 14: 326-339
  • 43 Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 2008; 13: 829, 833-857