neuroreha 2012; 4(04): 156-160
DOI: 10.1055/s-0032-1331356
Schwerpunkt Fitness
Georg Thieme Verlag KG Stuttgart · New York

Körperliches Training als wichtiger Bestandteil der geriatrischen Neurorehabilitation

Franka Thurm
1   Entwicklungspsychologie, Technische Universität Dresden, 01062 Dresden
› Author Affiliations
Further Information

Publication History

Publication Date:
29 November 2012 (online)

Zusammenfassung

Körperliche Fitness wirkt positiv sowohl auf die kognitive Leistungsfähigkeit von gesunden älteren Erwachsenen als auch auf die von älteren Personen mit leichter kognitiver Beeinträchtigung und Demenz. Auch bei stärkerer körperlicher Beeinträchtigung und Betreuungsbedürftigkeit kann sich ein multimodales körperliches Training im Sitzen noch begünstigend auf den Gesundheitszustand der Patienten auswirken. Grundlagenforschung im Tiermodell sowie erste Humanstudien weisen darauf hin, dass (aerobes) körperliches Training neuroplastische Prozesse (z. B. die Ausschüttung von Nervenwachstumsfaktoren) im Gehirn fördert und somit auch im hohen Alter noch kognitive Verbesserung ermöglicht.

 
  • Literatur

  • 1 Oeppen J, Vaupel JW. Demography. Broken limits to life expectancy. Science 2002; 296: 1029-1031
  • 2 Vaupel JW. Biodemography of human ageing. Nature 2010; 464: 536-542
  • 3 Bäckman L, Wahlin Å, Small BJ et al. Cognitive Functioning in Aging and Dementia: The Kungsholmen Project. Aging Neuropsychol Cogn 2004; 11: 212-244
  • 4 Christensen H. What cognitive changes can be expected with normal ageing?. The Aust N Z J Psychiatry 2001; 35: 768-775
  • 5 Corral M, Amenedo E et al. Cognitive reserve, age, and neuropsychological performance in healthy participants. Dev Neuropsychol 2006; 29: 479-491
  • 6 Salthouse TA. When does age-related cognitive decline begin?. Neurobiol Aging 2009; 30: 507-514
  • 7 Singer T, Verhaeghen P, Ghisletta P et al. The fate of cognition in very old age: six-year longitudinal findings in the Berlin Aging Study (BASE). Psychol Aging 2003; 18: 318-331
  • 8 Fjell AM, Walhovd KB, Fennema-Notestine C et al. One-year brain atrophy evident in healthy aging. J Neurosci 2009; 29: 15223-15231
  • 9 Kramer JH, Mungas D, Reed BR et al. Longitudinal MRI and cognitive change in healthy elderly. Neuropsychology 2007; 21: 412-418
  • 10 Jorm AF, Jolley D. The incidence of dementia: a meta-analysis. Neurology 1998; 51: 728-733
  • 11 Yaffe K, Fiocco AJ, Lindquist K et al. Predictors of maintaining cognitive function in older adults: the Health ABC study. Neurology 2009; 72: 2029-2035
  • 12 Merzenich MM, Nelson RJ, Stryker MP et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 1984; 224: 591-605
  • 13 Elbert T, Flor H, Birbaumer N et al. Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. Neuroreport 1994; 5: 2593-2597
  • 14 Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol 2004; 3: 343-353
  • 15 Elbert T, Rockstroh B. Kortikale Reorganisation. In: Karnath H-O, Thier P. Neuropsychologie. 2. Aufl. Heidelberg: Springer Medizin Verlag; 2006
  • 16 Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil 2004; 85: 1694-1704
  • 17 Lautenschlager NT, Cox KL, Flicker L et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 2008; 300: 1027-1037
  • 18 Lautenschlager NT, Almeida OP. Physical activity and cognition in old age. Curr Opin Psychiatry 2006; 19: 190-193
  • 19 Larson EB, Wang L, Bowen JD et al. Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 2006; 144: 73-81
  • 20 Erickson KI, Prakash RS, Voss MW et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 2009; 19: 1030-1039
  • 21 Schuit AJ, Feskens EJ, Launer LJ et al. Physical activity and cognitive decline, the role of the apolipoprotein e4 allele. Med Sci Sports Exerc 2001; 33: 772-777
  • 22 Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 2003; 14: 125-130
  • 23 Colcombe SJ, Kramer AF, Erickson KI et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A 2004; 101: 3316-3321
  • 24 Colcombe SJ, Erickson KI, Scalf PE et al. Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 2006; 61: 1166-1170
  • 25 Erickson KI, Voss MW, Prakash RS et al. Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 2011; 108: 3017-3022
  • 26 Smith PJ, Blumenthal JA, Hoffman BM et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 2010; 72: 239-252
  • 27 Honea RA, Thomas GP, Harsha A et al. Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Dis Assoc Disord 2009; 23: 188-197
  • 28 Kemoun G, Thibaud M, Roumagne N et al. Effects of a physical training programme on cognitive function and walking efficiency in elderly persons with dementia. Dement Geriatr Cogn Disord 2010; 29: 109-114
  • 29 Eggermont LH, Swaab DF, Hol EM et al. Walking the line: a randomised trial on the effects of a short term walking programme on cognition in dementia. J Neurol Neurosurg Psychiatry 2009; 80: 802-804
  • 30 Lazowski DA, Ecclestone NA, Myers AM et al. A randomized outcome evaluation of group exercise programs in long-term care institutions. J Gerontol A Biol Sci Med Sci 1999; 54: M621-628
  • 31 Schnelle JF, MacRae PG, Giacobassi K et al. Exercise with physically restrained nursing home residents: maximizing benefits of restraint reduction. J Am Geriatr Soc 1996; 44: 507-512
  • 32 Thurm F, Scharpf A, Liebermann N et al. Improvement of cognitive function after physical movement training in institutionalized very frail older adults with dementia. GeroPsych 2011; 24: 197-208
  • 33 van Praag H, Shubert T, Zhao C et al. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 2005; 25: 8680-8685
  • 34 Adlard PA, Perreau VM, Pop V et al. Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 2005; 25: 4217-4221
  • 35 Erickson KI, Miller DL, Roecklein KA. The aging hippocampus: interactions between exercise, depression, and BDNF. Neuroscientist 2012; 18: 82-97
  • 36 Murer MG, Yan Q, Raisman-Vozari R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson‘s disease. Prog Neurobio 2001; 63: 71-124
  • 37 Murer MG, Boissiere F, Yan Q et al. An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease. Neuroscience 1999; 88: 1015-1032
  • 38 Neeper SA, Gomez-Pinilla F, Choi J et al. Exercise and brain neurotrophins. Nature 1995; 373: 109
  • 39 Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 2004; 20: 2580-2590
  • 40 Rasmussen P, Brassard P, Adser H et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 2009; 94: 1062-106
  • 41 Zoladz JA, Pilc A, Majerczak J et al. Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol 2008; 59: 119-132
  • 42 Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation. Trends Neurosci 2007; 30: 464-472