Fortschr Neurol Psychiatr 2013; 81(3): 154-161
DOI: 10.1055/s-0032-1330544
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Succinat-Semialdehyd-Dehydrogenase-Mangel: eine vererbbare neurometabolische Erkrankung

Succinic Semialdehyde Dehydrogenase Deficiency: An Inheritable Neurometabolic Disease
M. Gahr
,
B. J. Connemann
,
C. J. Schönfeldt-Lecuona
,
R. W. Freudenmann
Further Information

Publication History

Publication Date:
20 March 2013 (online)

Zusammenfassung

Succinat-Semialdehyd-Dehydrogenase-Mangel (SSADHD) ist eine neurometabolische Erkrankung mit autosomal-rezessivem Erbgang. Gegenwärtig sind weltweit zwar nur ca. 450 Fälle bekannt, dennoch gehört der SSADHD zu den häufigen pädiatrisch relevanten Störungen des Neurotransmitterstoffwechsels. SSADHD liegt eine Mutation im Aldh5a1-Gen zugrunde, was zu einer gestörten Funktion der Succinat-Semialdehyd-Dehydrogenase führt. Dadurch kommt es zu einer Akkumulation von γ-Aminobuttersäure und Succinat-Semialdehyd, welches bei SSADHD alternativ mittels der Succinat-Semialdehyd-Reduktase zu γ-Hydroxy-Buttersäure metabolisiert wird. Der klinische Phänotyp ist unspezifisch mit ausgeprägter interindividueller Varianz. Motorische und sprachliche Entwicklungsverzögerung sowie Epilepsie, Intelligenzminderung, Schlafstörung, Ataxie, muskuläre Hypotonie und Verhaltensauffälligkeiten sind jedoch häufig. Erste Symptome treten häufig bereits im ersten Lebensjahr auf, während die Erkrankung insgesamt eher statisch verläuft. Gegenwärtig existieren keine kausalen Therapieoptionen.

Abstract

Succinic semialdehyde dehydrognase deficiency (SSADHD) is a neurometabolic disease with autosomal recessive inheritance. Although only about 450 cases are known worldwide, SSADHD is a frequent paediatric disorder of the neurotransmitter metabolism. SSADHD is caused by a mutation of the Aldh5a1-gene resulting in a dysfunction of the enzyme succinic semialdehyde dehydrogenase. This is followed by an accumulation of γ-aminobutyric acid and succinic semialdehyde that is alternatively metabolised via succinic semialdehyde reductase to γ-hydroxybutyric acid. The clinical phenotype is unspecific with pronounced interindividual variability. However, delayed acquisition of motor and language developmental milestones as well as epilepsy, mental retardation, sleep disorder, ataxia, muscle hypotonia, and behavioural disturbances are frequent. First symptoms frequently occur in the first year of life while the general course of the disease is non-progressive. Currently, no causal therapy exists.

 
  • Literatur

  • 1 Kim K, Pearl P, Jensen K et al. Succinic semialdehyde dehydrogenase: biochemical-molecular-clinical disease mechanisms, redox regulation, and functional significance. Antioxid Redox Signal 2011; 15: 691-718
  • 2 Gibson K, Baumann C, Ogier H et al. Pre- and postnatal diagnosis of succinic semialdehyde dehydrogenase deficiency using enzyme and metabolite assays. J Inherit Metab Dis 1994; 17: 732-737
  • 3 Cash C, Maitre M, Mandel P. Purification from human brain and some properties of two NADPH-linked aldehyde reductases which reduce succinic semialdehyde to 4-hydroxybutyrate. J Neurochem 1979; 33: 1169-1175
  • 4 Pearl P, Novotny E, Acosta M et al. Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 2003; 54 (Suppl. 06) 73-80
  • 5 Gibson K, Gupta M, Pearl P et al. Significant behavioral disturbances in succinic semialdehyde dehydrogenase (SSADH) deficiency (gamma-hydroxybutyric aciduria). Biol Psychiatry 2003; 54: 763-768
  • 6 Gibson K, Christensen E, Jakobs C et al. The clinical phenotype of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria): case reports of 23 new patients. Pediatrics 1997; 99: 567-574
  • 7 Sedel F, Baumann N, Turpin J et al. Psychiatric manifestations revealing inborn errors of metabolism in adolescents and adults. J Inherit Metab Dis 2007; 30: 631-641
  • 8 Jakobs C, Bojasch M, Mönch E et al. Urinary excretion of gamma-hydroxybutyric acid in a patient with neurological abnormalities. The probability of a new inborn error of metabolism. Clin Chim Acta 1981; 111: 169-178
  • 9 Gibson K, Jakobs C. Disorders of beta- and alpha-amino acids in free and peptide-linked forms. In: Scriver C, Beaudet A, Sly W, et al. (eds) The metabolic and molecular bases of inherited disease. 8 ed. New York: McGraw-Hill; 2001: 2079-2105
  • 10 Pearl P, Gibson K, Cortez M et al. Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men. J Inherit Metab Dis 2009; 32: 343-352
  • 11 Gibson K, Jakobs C, Pearl P et al. Murine succinate semialdehyde dehydrogenase (SSADH) deficiency, a heritable disorder of GABA metabolism with epileptic phenotype. IUBMB Life 2005; 57: 639-644
  • 12 Pearl P, Taylor J, Trzcinski S et al. The pediatric neurotransmitter disorders. J Child Neurol 2007; 22: 606-616
  • 13 Opladen T, Hoffmann G, Blau N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalalinaemia. J Inherit Metab Disord 2012; 35: 963-973
  • 14 Hennermann J, Berger J, Grieben U et al. Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Disord 2012; 35: 253-261
  • 15 Bok L, Halbertsma F, Houterman S et al. Long-term outcome in pyridoxine-dependent epilepsy. Dev Med Child Neurol 2012; 54: 849-854
  • 16 Knerr I, Gibson K, Jakobs C et al. Neuropsychiatric morbidity in adolescent and adult succinic demialdehyde dehydrogenase deficiency patients. CNS Spectr 2008; 13: 598-605
  • 17 Jakobs C, Smit L, Knerr I et al. The first adult case with 4-hydroxybutyric aciduria. J Inherit Metab Dis 1990; 13: 341-344
  • 18 Amberger J, Bocchini C, Scott A et al. McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 2009; 37: D793-D796
  • 19 Pearl P, Gibson K, Acosta M et al. Clinical spectrum of succinic semialdehyde dehydrogenase deficiency. Neurology 2003; 60: 1413-1417
  • 20 Trettel F, Malaspina P, Jodice C et al. Human succinic semialdehyde dehydrogenase. Molecular cloning and chromosomal localization. Adv Exp Med Biol 1997; 414: 253-260
  • 21 Chambliss K, Hinson D, Trettel F et al. Two exon-skipping mutations as the molecular basis of succinic semialdehyde dehydrogenase deficiency (4-hydroxy aciduria). Am J Med Gen 1998; 63: 399-408
  • 22 Aoshima T, Kajita M, Sekido Y et al. Mutation analysis in a patient with succinic demialdehyde dehydrogenase deficiency: a compound heterozygote with 103-121del and 1460T > A of the ALDH5A1 gene. Hum Hered 2002; 53: 42-44
  • 23 Akaboshi S, Hogema B, Novelletto A et al. Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat 2003; 22: 442-450
  • 24 Bekri S, Fossoud C, Plaza G et al. The molecular basis of succinic semialdehyde dehydrogenase deficiency in one family. Mol Genet Metab 2004; 81: 347-351
  • 25 Blasi P, Palmerio F, Caldarola S et al. Succinic semialdehyde dehydrogenase deficiency: clinical, biochemical and molecular characterization of a new patient with severe phenotype and a novel mutation. Clin Genet 2006; 69: 294-296
  • 26 Kwok J, Yuen C, Law L et al. A novel ALDH5A1 mutation in a patient with succinic semialdehyde dehydrogenase deficiency. Pathology 2012; 44: 280-282
  • 27 Gibson K, Doskey A, Rabier D et al. Differing clinical presentation of succinic semialdehyde dehydrogenase deficiency in adolescent siblings from Lifu Island, New Caledonia. J Inherit Metab Dis 1997; 20: 370-374
  • 28 Al-Essa M, Bakheet S, Patay Z et al. Clinical, fluorine-18 labeled 2-fluoro-2-deoxyglucose positron emission tomography (FDG PET), MRI of the brain and biochemical observations in a patients with 4-hydroxybutyric aciduria; a progressive neurometabolic disease. Brain Dev 2000; 22: 127-131
  • 29 Yalcinkaya C, Gibson K, Gubduz E et al. MRI findings in succinic semialdehyde dehydrogenase deficiency. Neuropediatrics 2000; 31: 45-46
  • 30 Albers R, Koval G. Succinic semialdehyde dehydrogenase: purification and properties of the enzyme from monkey brain. Biochim Biophys Acta 1961; 52: 29-35
  • 31 Thauer R. Citric-acid cycle, 50 years on. Modifications and an alternative pathway in anaerobic bacteria. Eur J Biochem 1988; 176: 497-508
  • 32 Gibson K, Hoffmann G, Hodson A et al. 4-hydroxybutyric acid and the clinical phenotype of succinic semialdehyde dehydrogenase deficiency, an inborn error of GABA metabolism. Neuropediatrics 1998; 29: 14-22
  • 33 Scriver C, Gibson K. Disorders of beta- and gamma-amino acids in free and peptide-linked forms. In: Scriver C, Beaudet A, Sly W, et al. (eds) The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 1995: 1349-1368
  • 34 Pearl P, Acosta M, Wallis D et al. Dyskinetic features of succinate semialdehyde dehydrogenase deficiency, a GABA degradative defect. In: Fernandez-Alvarez E, Arzimanoglou A, Tolosa E, (eds) Paediatric Movement Disorders. Montrouge, France: John Libbey Eurotext; 2005
  • 35 Vogel K, Pearl P, Theodore W et al. Thirty years beyond discovery-Clinical trials in succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism. J Inherit Metab Dis 2012; 28 [Epub ahead of print]
  • 36 Doherty J, Hattox S, Snead O et al. Identification of endogeneous y-hydroxybutyrate in human and bovine brain and its regional distribution in human, guinea pig, and rhesus monkey brain. J Pharmacol Exp Ther 1978; 207: 130-139
  • 37 Smith D. Tranylcypromine stereoisomers, monoaminergic neurotransmission and behavior. A minireview. Pharmakopsychiatr Neuropsychopharmakol 1980; 13: 130-136
  • 38 Gervasi N, Monnier Z, Vincent P et al. Pathway-specific action of gamma-hydroxybutyric acid in sensory thalamus and its relevance to absence seizures. J Neurosci 2003; 23: 11469-11478
  • 39 Wu Y, Ali S, Ahmadian G et al. Gamma-hydroxybutyric acid (GHB) and y-aminobutyric acidB receptor (GABABR) binding sites are distinctive from one another: molecular evidence. Neuropharmacology 2004; 47: 1146-1156
  • 40 Lingenhoehl K, Brom R, Heid J et al. Gamma-hydroxybutyrate is a weak agonist at recombinant GABA(B) receptors. Neuropharmacology 1999; 38: 1667-1673
  • 41 Wong C, Gibson K, Snead 3rd O. Gamma-hydroxybutyric acid (GHB): from the street to the brain: neurobiology of a recreational drug. Trends Pharmacol Sci 2004; 25: 29-34
  • 42 Maitre M. The gamma-hydroxybutyrate signalling system in brain: organization and functional implications. Prog Neurobiol 1997; 51: 337-361
  • 43 Snead 3rd O, Gibson K. Gamma-Hydroxybutyric acid. N Engl J Med 2009; 352: 2721-2732
  • 44 Snead 3rd O. Gamma-hydroxybutyric and absence seizure activity. In: Tunnicliff G, Cash C, (eds) Gamma-hydroxybutyrate: molecular, functional and clinical aspects. London: Taylor and Francis; 2002: 132-149
  • 45 Buzzi A, Wu Y, Frantseva M et al. Succinic semialdehyde dehydrogenase deficiency: GABAB receptor-mediated function. Brain Res 2006; 1090: 15-22
  • 46 Wong C, Gibson K, Snead 3rd O. From the street to the brain: neurobiology of the recreational drug gamma-hydroxybutyric acid. Trends Pharmacol Sci 2004; 25: 29-34
  • 47 Adamowicz P, Kała M. Simultaneous screening for and determination of 128 date-rape drugs in urine by gas chromatography-electron ionization-mass spectrometry. Forensic Sci Int 2010; 198: 39-45
  • 48 Knerr I, Pearl P, Bottiglieri T et al. Therapeutic concepts in succinate semialdehyde dehydrogenase (SSADH; ALDH5a1) deficiency (gamma-hydroxybutyric aciduria). Hypotheses evolved from 25 years of patient evaluation, studies in Aldh5a1–/– mice and characterization of gamma-hydroxybutyric acid pharmacology. J Inherit Metab Dis 2007; 30: 279-294
  • 49 Ren X, Mody I. Gamma-hydroxybutyrate reduces mitogen-activated protein kinase phosphorylation via GABAB receptor activation in mouse frontal cortex and hippocampus. J Biol Chem 2003; 278: 42006-42011
  • 50 Donarum E, Stephan D, Larkin K et al. Expression profiling reveals multiple myelin alterations in murine succinate semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2006; 29: 143-156
  • 51 Bak L, Schousboe A, Waagepetersen H. The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 2006; 98: 641-653
  • 52 Berton F, Brancucci A, Beghè F et al. Gamma-Hydroxybutyrate inhibits excitatory postsynaptic potentials in rat hippocampal slice. Eur J Pharmacol 1999; 380: 109-116
  • 53 Hogema B, Gupta M, Senephansiri H et al. Pharmacologic rescue of lethal seizures in mice deficient in succinate semialdehyde dehydrogenase. Nat Genet 2001; 29: 212-216
  • 54 Gupta M, Polinsky M, Senephansiri H et al. Seizure evolution and amino acid imbalances in murine succinate semialdehyde dehydrogenase (SSADH) deficiency. Neurobiol Dis 2004; 16: 556-562
  • 55 Stewart L, Nylen K, Persinger M et al. Circadian distribution of generalized tonic-clonic seizures associated with murine succinic semialdehyde dehydrogenase deficiency, a disorder of GABA metabolism. Epilepsy Behav 2008; 13: 290-294
  • 56 Wu Y, Buzzi A, Frantseva M et al. Status epilepticus in mice deficient for succinate semialdehyde dehydrogenase: GABAA receptor-mediated mechanisms. Ann Neurol 2006; 59: 42-52
  • 57 Pearl P, Reehal T, Drillings I et al. Succinic Semialdehyde Dehydrogenase Deficiency. In: Pagon R, Bird T, Dolan C, et al. (eds) GeneReviews™. Seattle: University of Washington, Seattle; 1993–2004 May 05 [updated 2010 Oct 05]
  • 58 Pearl P, Capp P, Novotny E et al. Inherited disorders of neurotransmitters in children and adults. Clin Biochem 2005; 38: 1051-1058
  • 59 Pearl P, Gibson K. Clinical aspects of the disorders of GABA metabolism in children. Curr Opin Neurol 2004; 17: 107-113
  • 60 Pearl P, Acosta M, Wallis D et al. Dyskinetic features of succinate semialdehyde dehydrogenase deficiency, a GABA degenerative defect. In: Alvarez E, Arzimanoglu A, Tolosa E, (eds) Paediatric movement disorders: progress in understanding. Surrey, United Kingdom: John Libbey Eurotext; 2005: 203-212
  • 61 Arnulf I, Konofal E, Gibson K et al. Effect of genetically caused excess of brain gamma-hydroxybutyric acid and GABA on sleep. Sleep 2005; 28: 418-424
  • 62 Philippe A, Deron J, Genevieve D et al. Neurodevelopmental pattern of succinic semialdehyde dehydrogenase deficiency (gamma-hydroxybutyric aciduria). Dev Med Child Neurol 2004; 46: 564-568
  • 63 Pearl P, Shamim S, Theodore W et al. Polysomnographic abnormalities in succinic semialdehyde dehydrogenase (SSADH) deficiency. Sleep 2009; 32: 1645-1648
  • 64 Ziyeh S, Ansgar B, Korinthenberg R et al. Selective involvement of the globus pallidus and dentate nucleus in succinic semialdehyde dehydrogenase deficiency. Pediatr Radiol 2002; 32: 598-600
  • 65 Yalcinkaya C, Gibson K, Gündüz E et al. MRI findings in succinic semialdehyde dehydrogenase deficiency. Neuropediatrics 2000; 31: 45-46
  • 66 Brismar J, Ozand P. CT and MR of the brain in disorders of the proprionate and methylmalonate metabolism. Am J Neuroradiol 1994; 15: 1459-1473
  • 67 Harting I, Neumaier-Probst E, Seitz A et al. Dynamic changes of striatal and extrastriatal abnormalities in glitaric aciduria type I. Brain 2009; 132 (07) 1764-1782
  • 68 Pearl P, Taylor J, Trzcinski S et al. 11C-Flumazenil PET imaging in patients with SSADH deficiency. J Inherit Metab Dis 2007; 30 (Suppl. 01) 43
  • 69 Pearl P, Gibson K, Quezado Z et al. Decreased GABA-A binding on FMZ-PET in succinic semialdehyde dehydrogenase deficiency. Neurology 2009; 73: 423-429
  • 70 Knerr I, Gibson K, Murdoch G et al. Neuropathology in succinic semialdehyde dehydrogenase deficiency. Pediatr Neurol 2010; 42: 255-258
  • 71 Bonham J, Downing M, Pollitt R et al. Quality assessment of urinary organic acid analysis. Ann Clin Biochem 1994; 31: 129-133
  • 72 Gibson K, Aramaki S, Sweetman L et al. Stable isotope dilution analysis of 4-hydroxybutyric acid: an accurate method for quantification in physiological fluids and the prenatal diagnosis of 4-hydroxybutyric aciduria. Biomed Environ Mass Spectrom 1990; 19: 89-93
  • 73 Gibson K, Sweetman L, Nyhan W et al. Defective succinic semialdehyde dehydrogenase activity in 4-hydroxybutyric aciduria. Eur J Pediatr 1984; 142: 257-259
  • 74 Gibson K, Lee C, Chambliss K et al. 4-Hydroxybutyric aciduria: application of a fluorometric assay to the determination of succinic semialdehyde dehydrogenase activity in extracts of cultured human lymphoblasts. Clin Chim Acta 1991; 196: 219-221
  • 75 Medina-Kauwe L, Tobin A, DeMeirleir L et al. 4-Aminobutyrateaminotransferase (GABA-transaminase) deficiency. J Inherit Metab Dis 1999; 22: 414-427
  • 76 Rogawski M, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004; 5: 553-564
  • 77 Gropman A. Vigabatrin and newer interventions in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 2003; 54 (Suppl. 06) 66-72
  • 78 Pearl P, Gropman A. Monitoring gamma-hydrocybutyric acid levels in succinate-semialdehyde dehydrogenase deficiency. Ann Neurol 2004; 55: 599
  • 79 Jakobs C, Michael T, Jaeger E et al. Further evaluation of vigabatrin therapy in 4-hydroxybutyric aciduria. Eur J Pediatr 1992; 151: 466
  • 80 Gibson K, deVivo D, Jakobs C. Vigabatrin therapy in patient with succinic semialdehyde dehydrogenase deficiency. Lancet 1989; 2: 1105-1106
  • 81 Jaeken J, Casaer P, deCock P et al. Vigabatrin in GABA metabolism disorders. Lancet 1989; 1: 1074
  • 82 Uziel G, Bardelli P, Pantaleoni C et al. Hydroxybutyric aciduria: clinical findings and vigabatrin therapy. J Inherit Metab Dis 1993; 16: 520-522
  • 83 Ergezinger K, Jeschke R, Frauendienst-Egger G et al. Monitoring of 4-hydroxybutyric acid levels in body fluids during vigabatrin treatment in succinic semialdehyde dehydrogenase deficiency. Ann Neurol 2003; 54: 686-689
  • 84 Escalera G, Ferrer I, Marina L et al. Succinic semialdehyde dehydrogenase deficiency: decrease in 4-OH-butyric acid levels with low doses of vigabatrin. An Pediatr 2010; 72: 128-132
  • 85 Casarano M, Alessandri M, Salomons G et al. Efficacy of vigabatrin intervention in a mild phenotypic expression of succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis (JIMD Reports) 2011; 2: 119-123
  • 86 Matern D, Lehnert W, Gibson K et al. Seizures in a boy with succinic semialdehyde dehydrogenase deficiency treated with vigabatrin (gamma-vinyl-GABA). J Inherit Metab Dis 1996; 19: 313-318
  • 87 Leon R, Wu H, Jin Y et al. Protective function of taurine in glutamate-induced apoptosis in cultures neurons. J Neurosci Res 2008; 87: 1185-1194
  • 88 El Idrissi A, Messing J, Scalia J et al. Prevention of epileptic seizures by taurine. Adv Exp Med Biol 2003; 526: 515-525
  • 89 Gupta M, Greven R, Jansen E et al. Therapeutic intervention in mice deficient for succinate semialdehyde dehydrogenas (gamma-hydroxybutyric aciduria). J Pharmacol Exp Ther 2002; 302: 180-187
  • 90 Saronwala A, Tournay A, Gargus J. Taurine treatment of succinate semialdehyde dehydrogenase (SSADH) deficiency reverses MRI-documented globus lesion and clinical syndrome. In, 15th Ann Clin Genet Meeting. Phoenix AZ USA: Am Coll Med Genet; 2008: 103
  • 91 Pearl P, Theodore W, McCarter R et al. Taurine intervention in succinic semialdehyde dehydrogenase deficiency: an open label trial. Molec Genet Metab 2012; 105: 346 , abstract
  • 92 McNally M, Hartman A. Ketone bodies in epilepsy. J Neurochem 2012; 121: 28-35
  • 93 Cusmai R, Martinelli D, Moavero R et al. Ketogenic diet in early myoclonic encephalopathy due to non ketotic hyperglycinemia. Eur J Paediatr Neurol 2012; 2012
  • 94 Nylen K, Velazquez J, Sayed V et al. The effects of a ketogenic diet on ATP concentrations and the number of hippocampal mitochondria in Aldh5a1(–/–) mice. Biochim Biophys Acta 2009; 1790: 208-212
  • 95 Nylen K, Velazquez J, Likhodii S et al. A ketogenic diet rescues the murine succinic semialdehyde dehydrogenase deficient phenotype. Exp Neurol 2008; 210: 449-457
  • 96 Hogema B, Akaboshi S, Taylor M et al. Prenatal diagnosis of succinic semialdehyde dehydrogenase deficiency: increased accuracy employing DNA, enzyme, and metabolite analyses. Mol Genet Metab 2001; 72: 218-222
  • 97 Froestl W, Gallagher M, Jenkins H et al. SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochem Pharmacol 2004; 15: 1479-1487