Subscribe to RSS
DOI: 10.1055/s-0032-1321838
Bioreaktoren in der Regenerativen Medizin – Vom technischen Apparat zur rekonstruktiven Alternative?
Bioreactors in Regenerative Medicine – From a Technical Device to a Reconstructive Alternative?Publication History
eingereicht 29 June 2012
akzeptiert 03 July 2012
Publication Date:
29 August 2012 (online)

Zusammenfassung
Mit Beginn des Zeitalters des sog. Tissue Engineering (TE) wurden experimentelle Versuchsanordnungen entwickelt, die einen geschlossenen Umgebungsraum mit optimierten Bedingungen für Zellwachstum oder Produkterzeugnis definieren sollten. Diese Systeme wurden als „Bioreaktoren“ bezeichnet. Durch die Übertragung des „Bioreaktor-Prinzips“ in den biomedizinischen Sektor wurden Entwicklungen der Biomaterialwissenschaften und der Zellbiologie in einer neuen integrativen Forschungsdisziplin vereint. Auch im Zeitalter der regenerativen Medizin (RegMed) stellt die Übertragung der Ergebnisse auf in vivo Bedingungen und somit auf die zukünftige klinische Anwendung die größte Herausforderung dar. Ziel des Bioreaktors ist es, diesen in vivo Bedingungen gerecht zu werden, um damit die Integration neu geschaffenen Gewebes in einen lebenden Organismus zu gewährleisten. Moderne in vivo Bioreaktoren werden heute als integraler Bestandteil des lebenden Organismus verstanden. Die Zellvermehrung und Gewebereifung steht hierbei von Beginn an unter den Einflüssen und physiologischen Wechselwirkungen des Empfängerorganismus. Neueste Entwicklungen aus Gebieten wie die rekonstruktive Chirurgie (arteriovenöse Gefäßschleife zur Organzüchtung) und das moderne Wundmanagement (die topische Unterdrucktherapie als perfusions-Bioreaktor) sollten neue Impulse für die Übertragbarkeit der Reg-Med-Konzepten in den klinischen Alltag liefern.
Abstract
With the advent of the era of tissue engineering (TE), experimental settings have been developed that allow for a defined environment with optimised cell growth conditions and/or the production of specific substitutes. These isolated systems have been termed “bioreactors”. By translating the principles of bioreactors into an in vivo context, advances in biomaterial sciences and cell biology have been merged into an integrative research concept. Even today, in the age of regenerative Medicine (RegMed) the transfer of experimental in vitro findings into a clinical in vivo approach still remains a vast challenge. In order to fulfil these specific requirements bioreactors had to be defined anew. Latest advances in areas like reconstructive medicine (the arteriovenous loop as a means of organogenesis) or modern wound management (topical negative pressure therapy as a perfusion bioreactor) give new impulses towards the translation of Reg-Med concepts into the clinical routine.
-
Literatur
- 1 Carpentier B, Gautier A, Legallais C. Artificial and bioartificial liver devices: present and future. Gut 2009; 58: 1690-1702 [pii]10.1136/gut.2008.175380 [doi]
- 2 Horch RE, Kneser U, Polykandriotis E et al. Tissue engineering and regenerative medicine – where do we stand?. J Cell Mol Med 16: 1157-1165 [doi]
- 3 Cormier JT, zur Nieden NI, Rancourt DE et al. Expansion of undifferentiated murine embry-onic stem cells as aggregates in suspension culture bioreactors. Tissue Eng 2006; 12: 3233-3245 [doi]
- 4 Fok EY, Zandstra PW. Shear-controlled single-step mouse embryonic stem cell expansion and embryoid body-based differentiation. Stem Cells 2005; 23: 1333-1342 [pii] 10.1634/stemcells.2005-0112 [doi]
- 5 Rath SN, Strobel LA, Arkudas A et al. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med [doi]
- 6 Bleiziffer O, Hammon M, Naschberger E et al. Endothelial progenitor cells are integrated in newly formed capillaries and alter adjacent fibrovascular tissue after subcutaneous implantation in a fibrin matrix. J Cell Mol Med 15: 2452-2461 [doi]
- 7 Sanford GL, Ellerson D, Melhado-Gardner C et al. Three-dimensional growth of endothelial cells in the microgravity-based rotating wall vessel bioreactor. In Vitro Cell Dev Biol Anim 2002; 38: 493-504, [doi]
- 8 Unsworth BR, Lelkes PI. Growing tissues in microgravity. Nat Med 1998; 4: 901-907
- 9 Boos AM, Loew JS, Deschler G et al. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model. J Cell Mol Med 15: 1364-1378 [pii] 10.1111/j.1582-4934.2010.01131.x [doi]
- 10 Hildebrand DK, Wu ZJ, Mayer Jr JE et al. Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann Biomed Eng 2004; 32: 1039-1049
- 11 Hoenig E, Winkler T, Mielke G et al. High amplitude direct compressive strain enhances mechanical properties of scaffold-free tissue-engineered cartilage. Tissue Eng Part A 17: 1401-1411 [doi]
- 12 Drolz A, Saxa R, Scherzer T et al. Extracorporeal artificial liver support in hypoxic liver injury. Liver Int; 31 (Suppl. 03) 19-23 [doi]
- 13 Leffler M, Derrick KL, McNulty A et al. Changes of anabolic processes at the cellular and molecular level in chronic wounds under topical negative pressure can be revealed by transcriptome analysis. J Cell Mol Med 15: 1564-1571 [pii] 10.1111/j.1582-4934.2010.01147.x [doi]
- 14 Leffler M, Derrick KL, McNulty A et al. Changes of anabolic processes at the cellular and molecular level in chronic wounds under topical negative pressure can be revealed by transcriptome analysis. J Cell Mol Med 2011; 15: 1564-1571
- 15 Kopp J, Kneser U, Bach AD et al. Buried chip skin grafting in neuropathic diabetic foot ulcers following vacuum-assisted wound bed preparation: enhancing a classic surgical tool with no-vel technologies. The international journal of lower extremity wounds 2004; 3: 168-171,
- 16 Moiemen NS, Yarrow J, Kamel D et al. Topical negative pressure therapy: does it accelerate neovascularisation within the dermal regeneration template, Integra? A prospective histological in vivo study. Burns 36: 764-768, [pii] 101016/j.burns.2010.04.011 [doi]
- 17 Lantis Ii JC. Update 2012: Regenerative Medicine in Wounds: Current Use of Growth Factors, Cell Therapy, and Negative Pressure Wound Therapy for Chronic Wounds. Surg Technol Int; XXI: 43-49 [pii]
- 18 Scimeca CL, Bharara M, Fisher TK et al. Novel use of insulin in continuous-instillation negative pressure wound therapy as “wound chemotherapy”. J Diabetes Sci Technol 4: 820-824
- 19 Kneser U, Kaufmann PM, Fiegel HC et al. Long-term differentiated function of heterotopically transplanted hepatocytes on three-dimensional polymer matrices. J Biomed Mater Res 1999; 47: 494-503 [pii]
- 20 Warnke PH, Springer IN, Wiltfang J et al. Growth and transplantation of a custom vascularised bone graft in a man. Lancet 2004; 364: 766-770
- 21 Boos AM, Loew JS, Deschler G et al. Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model. J Cell Mol Med 2011; 15: 1364-1378
- 22 Bleiziffer O, Hammon M, Naschberger E et al. Endothelial progenitor cells are integrated in newly formed capillaries and alter adjacent fibrovascular tissue after subcutaneous implantation in a fibrin matrix. J Cell Mol Med 2011; 15: 2452-2461
- 23 Polykandriotis E, Drakotos D, Arkudas A et al. Factors influencing successful outcome in the arteriovenous loop model: a retrospective study of 612 loop operations. J Reconstr Microsurg 2011; 27: 11-18
- 24 Polykandriotis E, Tjiawi J, Euler S et al. The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res 2008; 75: 25-33
- 25 Lansley SM, Searles RG, Hoi A et al. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells. J Cell Mol Med 2011; 15: 2095-2105
- 26 Boos AM, Arkudas A, Kneser U et al. Bone tissue engineering for bone defect therapy. Handchir Mikrochir Plast Chir 2010; 42: 360-368
- 27 Horch RE. Tissue engineering in plastic and reconstructive surgery. Handchir Mikrochir Plast Chir 2010; 42: 327-328
- 28 Klumpp D, Horch RE, Kneser U et al. Engineering skeletal muscle tissue – new perspectives in vitro and in vivo. J Cell Mol Med 2010; 14: 2622-2329
- 29 Polykandriotis E, Arkudas A, Euler S et al. Prevascularisation strategies in tissue engineering. Handchir Mikrochir Plast Chir 2006; 38: 217-223
- 30 Beier JP, Hess A, Loew J et al. De novo generation of an axially vascularized processed bovine cancellous-bone substitute in the sheep arteriovenous-loop model. Eur Surg Res 2011; 46: 148-155,
- 31 Fang JS, Angelov SN, Simon AM et al. Cx37 deletion enhances vascular growth and facilitates ischemic limb recovery. Am J Physiol Heart Circ Physiol 2011; 301: H1872-H1881 [pii] 10.1152/ajpheart.00683.2011
- 32 Buschmann I, Pries A, Styp-Rekowska B et al. Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis. Development 2010; 137: 2187-2196, [pii] 10.1242/dev.045351
- 33 Schmidt VJ, Wolfle SE, Boettcher M et al. Gap junctions synchronize vascular tone within the microcirculation. Pharmacol Rep 2008; 60: 68-74
- 34 Polykandriotis E, Popescu LM, Horch RE. Regenerative medicine: then and now – an update of recent history into future possibilities. J Cell Mol Med 2010; 14: 2350–2358
- 35 Dragu A, Schnurer S, Surmann-Schmitt C et al. Gene expression analysis of ischaemia and reperfusion in human microsurgical free muscle tissue transfer. J Cell Mol Med 15: 983-993 [pii] 10.1111/j.1582-4934.2010.01061.x [doi]
- 36 Thomson H. Bioprocessing of embryonic stem cells for drug discovery. Trends Biotechnol 2007; 25: 224-230 [pii] 10.1016/j.tibtech.2007.03.003